論文の概要: Learning Flexible Heterogeneous Coordination with Capability-Aware Shared Hypernetworks
- arxiv url: http://arxiv.org/abs/2501.06058v1
- Date: Fri, 10 Jan 2025 15:39:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:20.896771
- Title: Learning Flexible Heterogeneous Coordination with Capability-Aware Shared Hypernetworks
- Title(参考訳): 能力を考慮した共有ハイパーネットによるフレキシブルな不均一なコーディネーションの学習
- Authors: Kevin Fu, Pierce Howell, Shalin Jain, Harish Ravichandar,
- Abstract要約: 異種多エージェント協調のための新しいアーキテクチャであるCASH(Capability-Aware Shared Hypernetworks)を提案する。
CASHは、ソフトパラメータ共有ハイパーネットワークを通じてサンプル効率を維持しながら十分な多様性を生成する。
2つの異種協調タスクと3つの標準学習パラダイムにまたがる実験を示す。
- 参考スコア(独自算出の注目度): 2.681242476043447
- License:
- Abstract: Cooperative heterogeneous multi-agent tasks require agents to effectively coordinate their behaviors while accounting for their relative capabilities. Learning-based solutions to this challenge span between two extremes: i) shared-parameter methods, which encode diverse behaviors within a single architecture by assigning an ID to each agent, and are sample-efficient but result in limited behavioral diversity; ii) independent methods, which learn a separate policy for each agent, and show greater behavioral diversity but lack sample-efficiency. Prior work has also explored selective parameter-sharing, allowing for a compromise between diversity and efficiency. None of these approaches, however, effectively generalize to unseen agents or teams. We present Capability-Aware Shared Hypernetworks (CASH), a novel architecture for heterogeneous multi-agent coordination that generates sufficient diversity while maintaining sample-efficiency via soft parameter-sharing hypernetworks. Intuitively, CASH allows the team to learn common strategies using a shared encoder, which are then adapted according to the team's individual and collective capabilities with a hypernetwork, allowing for zero-shot generalization to unseen teams and agents. We present experiments across two heterogeneous coordination tasks and three standard learning paradigms (imitation learning, on- and off-policy reinforcement learning). CASH is able to outperform baseline architectures in success rate and sample efficiency when evaluated on unseen teams and agents despite using less than half of the learnable parameters.
- Abstract(参考訳): 協調的な異種多エージェントタスクは、エージェントが相対的な能力を考慮しながら、その振る舞いを効果的に調整する必要がある。
この課題に対する学習ベースのソリューションは、2つの極端にまたがる。
一 個別のエージェントにIDを割り当てて単一のアーキテクチャ内の多様な振舞いをコードする共有パラメータ法であって、サンプリング効率が良いが、行動の多様性に限界があるもの
二 各代理人ごとに個別の方針を学習し、行動の多様性を増すが、サンプル効率に欠ける独立の方法。
以前の作業では、パラメータ共有の選択も検討されており、多様性と効率の妥協を可能にしている。
しかしながら、これらのアプローチはどれも、目に見えないエージェントやチームに効果的に一般化するものではない。
本稿では, ソフトパラメータ共有ハイパーネットによるサンプル効率を維持しつつ, 十分な多様性を生み出す, 異種多エージェント協調のための新しいアーキテクチャであるCapability-Aware Shared Hypernetworks (CASH)を提案する。
直感的には、CASHを使用することで、共有エンコーダを使用して共通の戦略を学習することができる。
我々は,2つの異種協調作業と3つの標準学習パラダイム(シミュレーション学習,オン・オフ・ポリティクス強化学習)にまたがる実験を行った。
CASHは、学習可能なパラメータの半分未満を使用しても、目に見えないチームやエージェントで評価した場合、成功率とサンプル効率でベースラインアーキテクチャを上回ります。
関連論文リスト
- Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Adaptive parameter sharing for multi-agent reinforcement learning [16.861543418593044]
生物学における脳に関する研究から着想を得た新しいパラメータ共有手法を提案する。
エージェントのタイプを、そのアイデンティティに基づいて、共有ネットワーク内の異なるリージョンにマッピングする。
本手法は,訓練パラメータを付加することなく,異なるエージェント間の戦略の多様性を向上させることができる。
論文 参考訳(メタデータ) (2023-12-14T15:00:32Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - CoMIX: A Multi-agent Reinforcement Learning Training Architecture for Efficient Decentralized Coordination and Independent Decision-Making [2.4555276449137042]
ロバストコーディネートスキルにより、エージェントは共有環境で、共通の目標に向けて、そして理想的には、お互いの進歩を妨げることなく、結合的に操作することができる。
本稿では,分散エージェントのための新しいトレーニングフレームワークであるCoordinated QMIXについて述べる。
論文 参考訳(メタデータ) (2023-08-21T13:45:44Z) - Heterogeneous Embodied Multi-Agent Collaboration [21.364827833498254]
不均一なマルチエージェントタスクは現実世界のシナリオでは一般的である。
本稿では,複数の異種エージェントが協調して異種物体を検出し,適切な位置に配置する異種マルチエージェント・タイピング・アップタスクを提案する。
本稿では, 乱れ検出に基づく階層的決定モデル, 合理的な受容器予測, およびハンドシェイクに基づくグループ通信機構を提案する。
論文 参考訳(メタデータ) (2023-07-26T04:33:05Z) - Learning Heterogeneous Agent Cooperation via Multiagent League Training [6.801749815385998]
本研究ではヘテロジニアス・リーグ・トレーニング(HLT)と呼ばれる汎用強化学習アルゴリズムを提案する。
HLTは、エージェントがトレーニング中に調査したポリシーのプールを追跡し、将来のポリシー最適化を促進するために異質なポリシーの集合を集めている。
協力スキルのレベルが異なるチームメイトとのコラボレーションにおいて、エージェントの振る舞いの多様性を高めるために、ハイパーネットワークが導入される。
論文 参考訳(メタデータ) (2022-11-13T13:57:15Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
我々はエージェントの行動差を定量化し、bfロールの多様性を通して政策パフォーマンスとの関係を構築する
MARLの誤差は, 役割多様性と強い関係を持つ3つの部分に分けられる。
分解された要因は3つの一般的な方向における政策最適化に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-06-01T04:58:52Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Celebrating Diversity in Shared Multi-Agent Reinforcement Learning [20.901606233349177]
深層多エージェント強化学習は、複雑な協調的な課題を解決することを約束している。
本稿では,共有型マルチエージェント強化学習の最適化と表現に多様性を導入することを目的とする。
提案手法は,Google Research Footballと超硬度StarCraft IIマイクロマネジメントタスクにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-06-04T00:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。