論文の概要: CoinRobot: Generalized End-to-end Robotic Learning for Physical Intelligence
- arxiv url: http://arxiv.org/abs/2503.05316v1
- Date: Fri, 07 Mar 2025 10:50:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 12:20:25.098500
- Title: CoinRobot: Generalized End-to-end Robotic Learning for Physical Intelligence
- Title(参考訳): CoinRobot: 物理的な知性のための汎用的なエンドツーエンドのロボット学習
- Authors: Yu Zhao, Huxian Liu, Xiang Chen, Jiankai Sun, Jiahuan Yan, Luhui Hu,
- Abstract要約: 当社のフレームワークはクロスプラットフォーム適応性をサポートし,産業用ロボット,協調アーム,タスク固有の変更を伴わない新しい実施形態をシームレスに展開する。
我々は,7つの操作タスクに関する広範囲な実験を通じて,我々のフレームワークを検証する。特に,我々のフレームワークで訓練された拡散モデルは,LeRobotフレームワークと比較して優れた性能と一般化性を示した。
- 参考スコア(独自算出の注目度): 12.629888401901418
- License:
- Abstract: Physical intelligence holds immense promise for advancing embodied intelligence, enabling robots to acquire complex behaviors from demonstrations. However, achieving generalization and transfer across diverse robotic platforms and environments requires careful design of model architectures, training strategies, and data diversity. Meanwhile existing systems often struggle with scalability, adaptability to heterogeneous hardware, and objective evaluation in real-world settings. We present a generalized end-to-end robotic learning framework designed to bridge this gap. Our framework introduces a unified architecture that supports cross-platform adaptability, enabling seamless deployment across industrial-grade robots, collaborative arms, and novel embodiments without task-specific modifications. By integrating multi-task learning with streamlined network designs, it achieves more robust performance than conventional approaches, while maintaining compatibility with varying sensor configurations and action spaces. We validate our framework through extensive experiments on seven manipulation tasks. Notably, Diffusion-based models trained in our framework demonstrated superior performance and generalizability compared to the LeRobot framework, achieving performance improvements across diverse robotic platforms and environmental conditions.
- Abstract(参考訳): 物理的な知性は、インボディードインテリジェンスを前進させ、ロボットがデモから複雑な行動を取得することができるという大きな約束を持っている。
しかし、多様なロボットプラットフォームや環境にまたがる一般化と伝達を実現するには、モデルアーキテクチャ、トレーニング戦略、データの多様性を慎重に設計する必要がある。
一方、既存のシステムはスケーラビリティ、異種ハードウェアへの適応性、現実の環境での客観的評価に悩まされることが多い。
このギャップを埋めるために,汎用的なエンドツーエンドのロボット学習フレームワークを提案する。
我々のフレームワークは、クロスプラットフォーム適応性をサポートする統一アーキテクチャを導入し、産業用ロボット、協調アーム、タスク固有の変更なしに新しい実施をシームレスに行えるようにした。
マルチタスク学習とネットワーク設計を合理化することにより、センサ構成やアクション空間との互換性を維持しながら、従来の手法よりも堅牢なパフォーマンスを実現する。
7つの操作タスクに関する広範な実験を通じて、我々のフレームワークを検証する。
特に,本フレームワークでトレーニングした拡散モデルでは,LeRobotフレームワークよりも優れた性能と汎用性を示し,多様なロボットプラットフォームと環境条件における性能改善を実現した。
関連論文リスト
- Redefining Robot Generalization Through Interactive Intelligence [0.0]
ロボットファンデーションモデルは、リアルタイムの人間-ロボット共適応の複雑さを扱うために、インタラクティブなマルチエージェント視点に進化する必要がある、と我々は主張する。
シングルエージェントデザインを超えて、私たちの立場は、ロボット工学の基礎モデルがより堅牢でパーソナライズされ、予想されるパフォーマンスのレベルを達成する方法を強調しています。
論文 参考訳(メタデータ) (2025-02-09T17:13:27Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
私たちは世界モデルを学ぶための新しいフレームワークを紹介します。
スケーラブルで堅牢なフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - Generalized Robot Learning Framework [10.03174544844559]
本稿では,様々なロボットや環境に容易に再現可能かつ伝達可能な,低コストなロボット学習フレームワークを提案する。
我々は,産業用ロボットにおいても,デプロイ可能な模倣学習をうまく適用できることを実証した。
論文 参考訳(メタデータ) (2024-09-18T15:34:31Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
汎用ロボット行動合成のための木構造多モードコード生成フレームワークRoboCodeXを提案する。
RoboCodeXは、高レベルの人間の命令を複数のオブジェクト中心の操作ユニットに分解する。
概念的および知覚的理解を制御コマンドにマッピングする能力をさらに強化するため、事前学習のための特別なマルチモーダル推論データセットを収集し、教師付き微調整のための反復的自己更新手法を導入する。
論文 参考訳(メタデータ) (2024-02-25T15:31:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Modular Customizable ROS-Based Framework for Rapid Development of Social
Robots [3.6622737533847936]
本稿では、このニーズに対処するオープンソースのフレームワークである、SROS(Socially-Interactive Robot Software Platform)について述べる。
特殊な知覚と対話のスキルは、任意のロボットに再利用可能な配置のためのROSサービスとして実装されている。
コンピュータビジョン, 音声処理, GPT2 自動補完音声をプラグアンドプレイ ROS サービスとして実装し, SROS のコア技術の有効性を実験的に検証した。
論文 参考訳(メタデータ) (2023-11-27T12:54:20Z) - Online Learning and Planning in Cognitive Hierarchies [10.28577981317938]
ロボットシステムの複雑な統合推論動作をモデル化するために,既存の形式的枠組みを拡張した。
新しいフレームワークは、異なる推論コンポーネント間の相互作用をより柔軟なモデリングを可能にする。
論文 参考訳(メタデータ) (2023-10-18T23:53:51Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。