論文の概要: Capability-Aware Shared Hypernetworks for Flexible Heterogeneous Multi-Robot Coordination
- arxiv url: http://arxiv.org/abs/2501.06058v4
- Date: Tue, 13 May 2025 02:02:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 14:37:18.708126
- Title: Capability-Aware Shared Hypernetworks for Flexible Heterogeneous Multi-Robot Coordination
- Title(参考訳): フレキシブル・ヘテロジニアス・マルチロボットコーディネートのための能力を考慮した共有ハイパーネット
- Authors: Kevin Fu, Shalin Anand Jain, Pierce Howell, Harish Ravichandar,
- Abstract要約: マルチロボットチームのための能力認識共有ハイパーネットワークス(CASH)を提案する。
CASHは、ハイパーネットワークを使用してフレキシブルな共有ポリシを効率的に学習する、ソフトウェイト共有アーキテクチャである。
トレーニングとゼロショットの一般化の両方において、CASHは性能とサンプル効率の点で、ベースラインアーキテクチャを一貫して上回っていることを示す。
- 参考スコア(独自算出の注目度): 2.6590401523087634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances have enabled heterogeneous multi-robot teams to learn complex and effective coordination skills. However, existing neural architectures that support heterogeneous teaming tend to force a trade-off between expressivity and efficiency. Shared-parameter designs prioritize sample efficiency by enabling a single network to be shared across all or a pre-specified subset of robots (via input augmentations), but tend to limit behavioral diversity. In contrast, recent designs employ a separate policy for each robot, enabling greater diversity and expressivity at the cost of efficiency and generalization. Our key insight is that such tradeoffs can be avoided by viewing these design choices as ends of a broad spectrum. Inspired by recent work in transfer and meta learning, and building on prior work in multi-robot task allocation, we propose Capability-Aware Shared Hypernetworks (CASH), a soft weight sharing architecture that uses hypernetworks to efficiently learn a flexible shared policy that dynamically adapts to each robot post-training. By explicitly encoding the impact of robot capabilities (e.g., speed and payload) on collective behavior, CASH enables zero-shot generalization to unseen robots or team compositions. Our experiments involve multiple heterogeneous tasks, three learning paradigms (imitation learning, value-based, and policy-gradient RL), and SOTA multi-robot simulation (JaxMARL) and hardware (Robotarium) platforms. Across all conditions, we find that CASH generates appropriately-diverse behaviors and consistently outperforms baseline architectures in terms of performance and sample efficiency during both training and zero-shot generalization, all with 60%-80% fewer learnable parameters.
- Abstract(参考訳): 最近の進歩により、異種多ロボットチームが複雑で効果的な調整スキルを学ぶことが可能になった。
しかしながら、異種チームをサポートする既存のニューラルネットワークは、表現性と効率のトレードオフを強いる傾向がある。
共有パラメータの設計は、単一のネットワークを(入力拡張を介して)ロボットのすべてのまたは指定されたサブセット間で共有可能にすることで、サンプリング効率を優先するが、振る舞いの多様性を制限する傾向がある。
対照的に、最近の設計では各ロボットに対して異なるポリシーを採用しており、効率と一般化のコストでより多様性と表現性を高めることができる。
私たちの重要な洞察は、このようなトレードオフは、これらの設計選択を幅広い範囲の終わりと見なすことによって回避できるということです。
近年のトランスファーとメタラーニングの取り組みや,マルチロボットタスクアロケーションにおける先行作業に触発されて,ハイパーネットワークを用いたフレキシブルな共有ポリシを効率よく学習し,各ロボットのポストトレーニングに動的に適応する,ソフトウェイトシェアリングアーキテクチャであるCASHを提案する。
ロボット能力(例えば速度やペイロード)が集団行動に与える影響を明示的に符号化することで、CASHは見えないロボットやチーム構成に対してゼロショットの一般化を可能にする。
実験では,多種多様なタスク,3つの学習パラダイム(シミュレーション学習,値ベース,ポリシー勾配RL),およびSOTAマルチロボットシミュレーション(JaxMARL)とハードウェア(Robotarium)プラットフォームについて検討した。
すべての条件において、CASHは適切な振る舞いを生成し、学習可能なパラメータが60%-80%少なく、トレーニングとゼロショットの一般化の両方における性能とサンプル効率の点で、ベースラインアーキテクチャを一貫して上回ります。
関連論文リスト
- CoinRobot: Generalized End-to-end Robotic Learning for Physical Intelligence [12.629888401901418]
当社のフレームワークはクロスプラットフォーム適応性をサポートし,産業用ロボット,協調アーム,タスク固有の変更を伴わない新しい実施形態をシームレスに展開する。
我々は,7つの操作タスクに関する広範囲な実験を通じて,我々のフレームワークを検証する。特に,我々のフレームワークで訓練された拡散モデルは,LeRobotフレームワークと比較して優れた性能と一般化性を示した。
論文 参考訳(メタデータ) (2025-03-07T10:50:58Z) - EMOS: Embodiment-aware Heterogeneous Multi-robot Operating System with LLM Agents [33.77674812074215]
異種ロボット間の効果的な協調を実現するための新しいマルチエージェントフレームワークを提案する。
エージェントがロボットURDFファイルを理解し、ロボットキネマティクスツールを呼び出し、その物理能力の記述を生成する。
Habitat-MASベンチマークは、マルチエージェントフレームワークがエンボディメント認識推論を必要とするタスクをどのように処理するかを評価するように設計されている。
論文 参考訳(メタデータ) (2024-10-30T03:20:01Z) - Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers [41.069074375686164]
本稿では、政策ニューラルネットワークのトランクを事前訓練してタスクを学習し、共有表現を具体化する異種事前学習トランスフォーマー(HPT)を提案する。
52データセットの範囲で,トレーニング対象のスケーリング行動を調べる実験を行った。
HPTはいくつかのベースラインを上回り、未確認タスクで20%以上の微調整されたポリシー性能を向上させる。
論文 参考訳(メタデータ) (2024-09-30T17:39:41Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENTは、異種マルチロボットシステムの協調のための新しいLCMベースのタスク計画フレームワークである。
提案-実行-フィードバック-調整機構は,個々のロボットに対して動作を分解・割り当てするように設計されている。
実験の結果,我々の研究は,成功率と実行効率の面で,従来の手法をはるかに上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-23T15:53:41Z) - Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
さまざまな種類のロボットにまたがって単一のポリシーを訓練することによって、ロボット学習はより広範囲で多様なデータセットを活用することができる。
そこで我々はCrossFormerを提案する。CrossFormerはスケーラブルでフレキシブルなトランスフォーマーベースのポリシーで、どんな実施形態からでもデータを消費できる。
我々は、同じネットワークウェイトがシングルアームとデュアルアームの操作システム、車輪付きロボット、クワッドコプター、四足歩行など、非常に異なるロボットを制御できることを実証した。
論文 参考訳(メタデータ) (2024-08-21T17:57:51Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
汎用ロボット行動合成のための木構造多モードコード生成フレームワークRoboCodeXを提案する。
RoboCodeXは、高レベルの人間の命令を複数のオブジェクト中心の操作ユニットに分解する。
概念的および知覚的理解を制御コマンドにマッピングする能力をさらに強化するため、事前学習のための特別なマルチモーダル推論データセットを収集し、教師付き微調整のための反復的自己更新手法を導入する。
論文 参考訳(メタデータ) (2024-02-25T15:31:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Adaptive parameter sharing for multi-agent reinforcement learning [16.861543418593044]
生物学における脳に関する研究から着想を得た新しいパラメータ共有手法を提案する。
エージェントのタイプを、そのアイデンティティに基づいて、共有ネットワーク内の異なるリージョンにマッピングする。
本手法は,訓練パラメータを付加することなく,異なるエージェント間の戦略の多様性を向上させることができる。
論文 参考訳(メタデータ) (2023-12-14T15:00:32Z) - RoboAgent: Generalization and Efficiency in Robot Manipulation via
Semantic Augmentations and Action Chunking [54.776890150458385]
マルチタスク操作能力を持つユニバーサルエージェントを訓練するための効率的なシステムを開発した。
私たちは、12のスキルを持つ1つのエージェントを訓練することができ、38のタスクでその一般化を実証することができます。
平均すると、RoboAgentは目に見えない状況において、従来の方法よりも40%以上性能が高い。
論文 参考訳(メタデータ) (2023-09-05T03:14:39Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - CoMIX: A Multi-agent Reinforcement Learning Training Architecture for Efficient Decentralized Coordination and Independent Decision-Making [2.4555276449137042]
ロバストコーディネートスキルにより、エージェントは共有環境で、共通の目標に向けて、そして理想的には、お互いの進歩を妨げることなく、結合的に操作することができる。
本稿では,分散エージェントのための新しいトレーニングフレームワークであるCoordinated QMIXについて述べる。
論文 参考訳(メタデータ) (2023-08-21T13:45:44Z) - Asynchronous Multi-Agent Reinforcement Learning for Efficient Real-Time
Multi-Robot Cooperative Exploration [16.681164058779146]
本稿では,複数のロボットが,未知の領域をできるだけ早く探索する必要がある,協調探索の課題について考察する。
既存のMARLベースの手法では、すべてのエージェントが完全に同期的に動作していると仮定して、探索効率の指標としてアクション作成ステップを採用している。
本稿では,非同期MARLソリューションであるAsynchronous Coordination Explorer (ACE)を提案する。
論文 参考訳(メタデータ) (2023-01-09T14:53:38Z) - Learning Heterogeneous Agent Cooperation via Multiagent League Training [6.801749815385998]
本研究ではヘテロジニアス・リーグ・トレーニング(HLT)と呼ばれる汎用強化学習アルゴリズムを提案する。
HLTは、エージェントがトレーニング中に調査したポリシーのプールを追跡し、将来のポリシー最適化を促進するために異質なポリシーの集合を集めている。
協力スキルのレベルが異なるチームメイトとのコラボレーションにおいて、エージェントの振る舞いの多様性を高めるために、ハイパーネットワークが導入される。
論文 参考訳(メタデータ) (2022-11-13T13:57:15Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z) - Policy Diagnosis via Measuring Role Diversity in Cooperative Multi-agent
RL [107.58821842920393]
我々はエージェントの行動差を定量化し、bfロールの多様性を通して政策パフォーマンスとの関係を構築する
MARLの誤差は, 役割多様性と強い関係を持つ3つの部分に分けられる。
分解された要因は3つの一般的な方向における政策最適化に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-06-01T04:58:52Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
協調型MARLにおける動的サブタスク代入(LDSA)を学習するための新しいフレームワークを提案する。
エージェントを異なるサブタスクに合理的に割り当てるために,能力に基づくサブタスク選択戦略を提案する。
LDSAは、より優れたコラボレーションのために、合理的で効果的なサブタスクの割り当てを学習していることを示す。
論文 参考訳(メタデータ) (2022-05-05T10:46:16Z) - Centralizing State-Values in Dueling Networks for Multi-Robot
Reinforcement Learning Mapless Navigation [87.85646257351212]
本稿では,CTDE(Training and Decentralized Execution)パラダイムにおけるマルチロボットマップレスナビゲーションの問題点について考察する。
この問題は、各ロボットが観察を他のロボットと明示的に共有することなく、その経路を考えると困難である。
我々は,集中型状態値ネットワークを用いて共同状態値を計算するCTDEの新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-16T16:47:00Z) - Celebrating Diversity in Shared Multi-Agent Reinforcement Learning [20.901606233349177]
深層多エージェント強化学習は、複雑な協調的な課題を解決することを約束している。
本稿では,共有型マルチエージェント強化学習の最適化と表現に多様性を導入することを目的とする。
提案手法は,Google Research Footballと超硬度StarCraft IIマイクロマネジメントタスクにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2021-06-04T00:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。