Geometry and Optimization of Shallow Polynomial Networks
- URL: http://arxiv.org/abs/2501.06074v1
- Date: Fri, 10 Jan 2025 16:11:27 GMT
- Title: Geometry and Optimization of Shallow Polynomial Networks
- Authors: Yossi Arjevani, Joan Bruna, Joe Kileel, Elzbieta Polak, Matthew Trager,
- Abstract summary: We study shallow neural networks with activations, focusing on the relationship between width and optimization.
We then consider teacher-student problems, that can be viewed as a problem of low-rank tensor approximation.
In particular, we present a variation of the Eckart-Young Theorem characterizing all critical points and their Hessian signatures.
- Score: 37.10914374024599
- License:
- Abstract: We study shallow neural networks with polynomial activations. The function space for these models can be identified with a set of symmetric tensors with bounded rank. We describe general features of these networks, focusing on the relationship between width and optimization. We then consider teacher-student problems, that can be viewed as a problem of low-rank tensor approximation with respect to a non-standard inner product that is induced by the data distribution. In this setting, we introduce a teacher-metric discriminant which encodes the qualitative behavior of the optimization as a function of the training data distribution. Finally, we focus on networks with quadratic activations, presenting an in-depth analysis of the optimization landscape. In particular, we present a variation of the Eckart-Young Theorem characterizing all critical points and their Hessian signatures for teacher-student problems with quadratic networks and Gaussian training data.
Related papers
- Black Boxes and Looking Glasses: Multilevel Symmetries, Reflection Planes, and Convex Optimization in Deep Networks [46.337104465755075]
We show that training deep neural networks (DNNs) with absolute value activation and arbitrary input dimension can be formulated as equivalent convex Lasso problems.
This formulation reveals geometric structures encoding symmetry in neural networks.
arXiv Detail & Related papers (2024-10-05T20:09:07Z) - Asymptotics of Learning with Deep Structured (Random) Features [9.366617422860543]
For a large class of feature maps we provide a tight characterisation of the test error associated with learning the readout layer.
In some cases our results can capture feature maps learned by deep, finite-width neural networks trained under gradient descent.
arXiv Detail & Related papers (2024-02-21T18:35:27Z) - From Complexity to Clarity: Analytical Expressions of Deep Neural Network Weights via Clifford's Geometric Algebra and Convexity [54.01594785269913]
We show that optimal weights of deep ReLU neural networks are given by the wedge product of training samples when trained with standard regularized loss.
The training problem reduces to convex optimization over wedge product features, which encode the geometric structure of the training dataset.
arXiv Detail & Related papers (2023-09-28T15:19:30Z) - Variation Spaces for Multi-Output Neural Networks: Insights on Multi-Task Learning and Network Compression [28.851519959657466]
This paper introduces a novel theoretical framework for the analysis of vector-valued neural networks.
A key contribution of this work is the development of a representer theorem for the vector-valued variation spaces.
This observation reveals that the norm associated with these vector-valued variation spaces encourages the learning of features that are useful for multiple tasks.
arXiv Detail & Related papers (2023-05-25T23:32:10Z) - Function Space and Critical Points of Linear Convolutional Networks [4.483341215742946]
We study the geometry of linear networks with one-dimensional convolutional layers.
We analyze the impact of the network's architecture on the function space's dimension, boundary, and singular points.
arXiv Detail & Related papers (2023-04-12T10:15:17Z) - Bayesian Interpolation with Deep Linear Networks [92.1721532941863]
Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory.
We show that linear networks make provably optimal predictions at infinite depth.
We also show that with data-agnostic priors, Bayesian model evidence in wide linear networks is maximized at infinite depth.
arXiv Detail & Related papers (2022-12-29T20:57:46Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
This work is to generalize neural networks so that they can learn mappings between infinite-dimensional spaces (operators)
We formulate approximation of the infinite-dimensional mapping by composing nonlinear activation functions and a class of integral operators.
Experiments confirm that the proposed graph kernel network does have the desired properties and show competitive performance compared to the state of the art solvers.
arXiv Detail & Related papers (2020-03-07T01:56:20Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.