Function Space and Critical Points of Linear Convolutional Networks
- URL: http://arxiv.org/abs/2304.05752v2
- Date: Fri, 26 Jan 2024 14:56:38 GMT
- Title: Function Space and Critical Points of Linear Convolutional Networks
- Authors: Kathl\'en Kohn, Guido Mont\'ufar, Vahid Shahverdi, Matthew Trager
- Abstract summary: We study the geometry of linear networks with one-dimensional convolutional layers.
We analyze the impact of the network's architecture on the function space's dimension, boundary, and singular points.
- Score: 4.483341215742946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the geometry of linear networks with one-dimensional convolutional
layers. The function spaces of these networks can be identified with
semi-algebraic families of polynomials admitting sparse factorizations. We
analyze the impact of the network's architecture on the function space's
dimension, boundary, and singular points. We also describe the critical points
of the network's parameterization map. Furthermore, we study the optimization
problem of training a network with the squared error loss. We prove that for
architectures where all strides are larger than one and generic data, the
non-zero critical points of that optimization problem are smooth interior
points of the function space. This property is known to be false for dense
linear networks and linear convolutional networks with stride one.
Related papers
- Asymptotics of Learning with Deep Structured (Random) Features [9.366617422860543]
For a large class of feature maps we provide a tight characterisation of the test error associated with learning the readout layer.
In some cases our results can capture feature maps learned by deep, finite-width neural networks trained under gradient descent.
arXiv Detail & Related papers (2024-02-21T18:35:27Z) - Data Topology-Dependent Upper Bounds of Neural Network Widths [52.58441144171022]
We first show that a three-layer neural network can be designed to approximate an indicator function over a compact set.
This is then extended to a simplicial complex, deriving width upper bounds based on its topological structure.
We prove the universal approximation property of three-layer ReLU networks using our topological approach.
arXiv Detail & Related papers (2023-05-25T14:17:15Z) - Complex Critical Points of Deep Linear Neural Networks [0.0]
For networks with a single hidden layer trained on a single data point we give an improved bound on the number of complex critical points of the loss function.
We show that for any number of hidden layers complex critical points with zero coordinates arise in certain patterns which we completely classify for networks with one hidden layer.
arXiv Detail & Related papers (2023-01-30T04:16:49Z) - Bayesian Interpolation with Deep Linear Networks [92.1721532941863]
Characterizing how neural network depth, width, and dataset size jointly impact model quality is a central problem in deep learning theory.
We show that linear networks make provably optimal predictions at infinite depth.
We also show that with data-agnostic priors, Bayesian model evidence in wide linear networks is maximized at infinite depth.
arXiv Detail & Related papers (2022-12-29T20:57:46Z) - The Role of Linear Layers in Nonlinear Interpolating Networks [13.25706838589123]
Our framework considers a family of networks of varying depth that all have the same capacity but different implicitly defined representation costs.
The representation cost of a function induced by a neural network architecture is the minimum sum of squared weights needed for the network to represent the function.
Our results show that adding linear layers to a ReLU network yields a representation cost that reflects a complex interplay between the alignment and sparsity of ReLU units.
arXiv Detail & Related papers (2022-02-02T02:33:24Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - Geometry of Linear Convolutional Networks [7.990816079551592]
We study the family of functions represented by a linear convolutional neural network (LCN)
We study the optimization of an objective function over an LCN, analyzing critical points in function space and in gradient space.
Overall, our theory predicts that the optimized parameters of an LCN will often correspond to repeated filters across layers.
arXiv Detail & Related papers (2021-08-03T14:42:18Z) - Deep Networks Provably Classify Data on Curves [12.309532551321334]
We study a model problem that uses a deep fully-connected neural network to classify data drawn from two disjoint smooth curves on the unit sphere.
We prove that when (i) the network depth is large to certain properties that set the difficulty of the problem and (ii) the network width and number of samples is intrinsic in the relative depth, randomly-d gradient descent quickly learns to correctly classify all points on the two curves with high probability.
arXiv Detail & Related papers (2021-07-29T20:40:04Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Eigendecomposition-Free Training of Deep Networks for Linear
Least-Square Problems [107.3868459697569]
We introduce an eigendecomposition-free approach to training a deep network.
We show that our approach is much more robust than explicit differentiation of the eigendecomposition.
Our method has better convergence properties and yields state-of-the-art results.
arXiv Detail & Related papers (2020-04-15T04:29:34Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
We develop a convex analytic approach to analyze finite width two-layer ReLU networks.
We show that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set.
In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints.
arXiv Detail & Related papers (2020-02-25T23:05:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.