論文の概要: Meta-Learning for Physically-Constrained Neural System Identification
- arxiv url: http://arxiv.org/abs/2501.06167v1
- Date: Fri, 10 Jan 2025 18:46:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-13 15:26:02.854707
- Title: Meta-Learning for Physically-Constrained Neural System Identification
- Title(参考訳): 物理的に制約されたニューラルネットワーク同定のためのメタラーニング
- Authors: Ankush Chakrabarty, Gordon Wichern, Vedang M. Deshpande, Abraham P. Vinod, Karl Berntorp, Christopher R. Laughman,
- Abstract要約: ブラックボックスシステム識別のためのニューラルネットワークモデル(NSSM)の高速適応のための勾配に基づくメタラーニングフレームワークを提案する。
メタ学習モデルでは,室内の局所化とエネルギーシステムにおけるモデルベース状態推定において,ダウンストリーム性能が向上することを示す。
- 参考スコア(独自算出の注目度): 9.417562391585076
- License:
- Abstract: We present a gradient-based meta-learning framework for rapid adaptation of neural state-space models (NSSMs) for black-box system identification. When applicable, we also incorporate domain-specific physical constraints to improve the accuracy of the NSSM. The major benefit of our approach is that instead of relying solely on data from a single target system, our framework utilizes data from a diverse set of source systems, enabling learning from limited target data, as well as with few online training iterations. Through benchmark examples, we demonstrate the potential of our approach, study the effect of fine-tuning subnetworks rather than full fine-tuning, and report real-world case studies to illustrate the practical application and generalizability of the approach to practical problems with physical-constraints. Specifically, we show that the meta-learned models result in improved downstream performance in model-based state estimation in indoor localization and energy systems.
- Abstract(参考訳): ブラックボックスシステム識別のためのニューラルネットワークモデル(NSSM)の高速適応のための勾配に基づくメタラーニングフレームワークを提案する。
適用すれば、NSSMの精度を向上させるために、ドメイン固有の物理的制約も組み込む。
このアプローチの大きなメリットは、単一のターゲットシステムからのデータのみに頼るのではなく、さまざまなソースシステムのデータを活用して、限られたターゲットデータからの学習を可能にし、オンライントレーニングのイテレーションを少なくすることです。
ベンチマークの例を通して、本手法の可能性を実証し、完全な微調整ではなく細調整サブネットの効果について検討し、実世界の事例研究を報告し、実際の物理制約問題に対するアプローチの実用的応用と一般化可能性について述べる。
具体的には,メタ学習モデルにより,室内の局所化とエネルギーシステムにおけるモデルベース状態推定において,下流性能が向上することを示す。
関連論文リスト
- MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models [6.031205224945912]
ニューラル状態空間モデル(NSSM)は、ディープエンコーダネットワークがデータから非線形性を学ぶ非線形系を近似するために用いられる。
これにより非線形系を潜在空間の線形系に変換し、モデル予測制御(MPC)を用いて効果的な制御動作を決定する。
論文 参考訳(メタデータ) (2024-04-18T11:29:43Z) - Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
本稿では,ビデオフレームなどの観測結果に基づいて,時間・動的システムの状態変化をモデル化し,推定することの課題に対処する。
本稿では、一般的な物理プロセスの法則をデータ駆動方式で捉えるために、ユニバーサルエキスパートモジュール、すなわち光フロー推定コンポーネントを提案する。
我々は、既存のSOTAベースラインと比較して、提案フレームワークが大きなパフォーマンスマージンを達成することを示すため、広範囲な実験と改善を実施している。
論文 参考訳(メタデータ) (2024-02-06T06:27:07Z) - Adaptive Meta-Learning-Based KKL Observer Design for Nonlinear Dynamical
Systems [0.0]
本稿では,メタラーニングによる非線形力学系のオブザーバ設計に対する新しいアプローチを提案する。
システム出力の測定から情報を活用するフレームワークを導入し、さまざまなシステム条件や属性にオンライン適応可能な学習ベースのKKLオブザーバを設計する。
論文 参考訳(メタデータ) (2023-10-30T12:25:14Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - Meta-Learning of Neural State-Space Models Using Data From Similar
Systems [11.206109495578705]
本稿では,深層エンコーダネットワークを用いたSSM構築のためのモデルに依存しないメタラーニングを提案する。
メタラーニングは教師付き学習や伝達学習よりも正確な神経SSMモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-11-14T22:03:35Z) - Learning dynamics from partial observations with structured neural ODEs [5.757156314867639]
本稿では,ニューラルODEに基づくシステム識別に関する幅広い物理的知見を取り入れたフレキシブルなフレームワークを提案する。
本稿では,ロボット外骨格を用いた数値シミュレーションおよび実験データセットにおける提案手法の性能について述べる。
論文 参考訳(メタデータ) (2022-05-25T07:54:10Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Meta-learning using privileged information for dynamics [66.32254395574994]
Neural ODE Processモデルを拡張して、Learning Using Privileged Information設定内の追加情報を使用します。
シミュレーション動的タスクの精度とキャリブレーションを向上した実験により拡張性を検証する。
論文 参考訳(メタデータ) (2021-04-29T12:18:02Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。