論文の概要: MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models
- arxiv url: http://arxiv.org/abs/2404.12097v1
- Date: Thu, 18 Apr 2024 11:29:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 12:41:30.583879
- Title: MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models
- Title(参考訳): メタラーニングによるニューラル予測モデルの高速適応のための不確かさ非線形システムのMPC
- Authors: Jiaqi Yan, Ankush Chakrabarty, Alisa Rupenyan, John Lygeros,
- Abstract要約: ニューラル状態空間モデル(NSSM)は、ディープエンコーダネットワークがデータから非線形性を学ぶ非線形系を近似するために用いられる。
これにより非線形系を潜在空間の線形系に変換し、モデル予測制御(MPC)を用いて効果的な制御動作を決定する。
- 参考スコア(独自算出の注目度): 6.031205224945912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the problem of reference tracking in uncertain nonlinear systems. A neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep encoder network learns the nonlinearity from data, and a state-space component captures the temporal relationship. This transforms the nonlinear system into a linear system in a latent space, enabling the application of model predictive control (MPC) to determine effective control actions. Our objective is to design the optimal controller using limited data from the \textit{target system} (the system of interest). To this end, we employ an implicit model-agnostic meta-learning (iMAML) framework that leverages information from \textit{source systems} (systems that share similarities with the target system) to expedite training in the target system and enhance its control performance. The framework consists of two phases: the (offine) meta-training phase learns a aggregated NSSM using data from source systems, and the (online) meta-inference phase quickly adapts this aggregated model to the target system using only a few data points and few online training iterations, based on local loss function gradients. The iMAML algorithm exploits the implicit function theorem to exactly compute the gradient during training, without relying on the entire optimization path. By focusing solely on the optimal solution, rather than the path, we can meta-train with less storage complexity and fewer approximations than other contemporary meta-learning algorithms. We demonstrate through numerical examples that our proposed method can yield accurate predictive models by adaptation, resulting in a downstream MPC that outperforms several baselines.
- Abstract(参考訳): 本稿では,不確実な非線形システムにおける参照追跡の問題について考察する。
ニューラルステートスペースモデル(NSSM)は、ディープエンコーダネットワークがデータから非線形性を学習し、状態空間コンポーネントが時間的関係をキャプチャする非線形システムを近似するために使用される。
これにより非線形系を潜在空間の線形系に変換し、モデル予測制御(MPC)を用いて効果的な制御動作を決定する。
本研究の目的は, <textit{target system} (利害関係システム) の限られたデータを用いた最適制御器の設計である。
この目的のために、ターゲットシステムにおけるトレーニングの迅速化と制御性能の向上のために、textit{source system}(ターゲットシステムと類似性を共有するシステム)の情報を活用する暗黙的なモデルに依存しないメタラーニング(iMAML)フレームワークを採用している。
このフレームワークは2つのフェーズから構成される: (オフライン) メタトレーニングフェーズは、ソースシステムからのデータを使用して集約されたNSSMを学習し、(オンライン) メタ推論フェーズは、この集約されたモデルをターゲットシステムに迅速に適応する。
iMAMLアルゴリズムは暗黙の関数定理を利用して、最適化パス全体に依存することなく、トレーニング中の勾配を正確に計算する。
パスではなく最適なソリューションにのみ焦点を合わせることで、従来のメタ学習アルゴリズムよりもストレージの複雑さが少なく、近似も少ないメタトレーニングが可能になる。
我々は,提案手法が適応によって正確な予測モデルが得られることを示す数値例を通して,下流のMPCがいくつかのベースラインを上回っていることを示す。
関連論文リスト
- Recursive Gaussian Process State Space Model [4.572915072234487]
動作領域とGPハイパーパラメータの両方に適応可能な新しいオンラインGPSSM法を提案する。
ポイントを誘導するオンライン選択アルゴリズムは、情報的基準に基づいて開発され、軽量な学習を実現する。
合成データセットと実世界のデータセットの総合的な評価は,提案手法の精度,計算効率,適応性を示す。
論文 参考訳(メタデータ) (2024-11-22T02:22:59Z) - Efficient model predictive control for nonlinear systems modelled by deep neural networks [6.5268245109828005]
本稿では、非線形性と不確実性が深層ニューラルネットワーク(NN)によってモデル化された動的システムのためのモデル予測制御(MPC)を提案する。
NN出力はシステム状態と制御入力の高次複素非線形性を含むため、MPC問題は非線形であり、リアルタイム制御では解決が難しい。
論文 参考訳(メタデータ) (2024-05-16T18:05:18Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Optimal Exploration for Model-Based RL in Nonlinear Systems [14.540210895533937]
未知の非線形力学系を制御する学習は、強化学習と制御理論の基本的な問題である。
本研究では,タスク依存メトリックにおける不確実性を低減するために,効率よくシステムを探索できるアルゴリズムを開発した。
我々のアルゴリズムは、ポリシー最適化から任意のシステムにおける最適な実験設計への一般的な還元に依存しており、独立した関心を持つ可能性がある。
論文 参考訳(メタデータ) (2023-06-15T15:47:50Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Meta-Learning of Neural State-Space Models Using Data From Similar
Systems [11.206109495578705]
本稿では,深層エンコーダネットワークを用いたSSM構築のためのモデルに依存しないメタラーニングを提案する。
メタラーニングは教師付き学習や伝達学習よりも正確な神経SSMモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-11-14T22:03:35Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
機械学習(ML)を活用した,新しい完全データ駆動制御方式を提案する。
最近開発されたMLに基づく複雑なシステムの予測機能により、非線形系は任意の初期状態から来る任意の動的対象状態に留まることが証明された。
必要なデータ量が少なく,柔軟性の高いコントロールスキームを備えることで,工学から医学まで幅広い応用の可能性について簡単に議論する。
論文 参考訳(メタデータ) (2021-02-23T16:58:26Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Neural-iLQR: A Learning-Aided Shooting Method for Trajectory
Optimization [17.25824905485415]
制約のない制御空間上の学習支援シューティング手法であるNeural-iLQRを提案する。
システムモデルにおける不正確さの存在下で、従来のiLQRよりも著しく優れていることが示されている。
論文 参考訳(メタデータ) (2020-11-21T07:17:28Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
部分的に観測可能な線形力学系におけるシステム同定と適応制御の問題について検討する。
開ループ系と閉ループ系の両方において有限時間保証付きの最初のモデル推定法を提案する。
AdaptOnは、未知の部分観測可能な線形力学系の適応制御において、$textpolylogleft(Tright)$ regretを達成する最初のアルゴリズムであることを示す。
論文 参考訳(メタデータ) (2020-03-25T06:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。