LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs
- URL: http://arxiv.org/abs/2501.06186v1
- Date: Fri, 10 Jan 2025 18:59:51 GMT
- Title: LlamaV-o1: Rethinking Step-by-step Visual Reasoning in LLMs
- Authors: Omkar Thawakar, Dinura Dissanayake, Ketan More, Ritesh Thawkar, Ahmed Heakl, Noor Ahsan, Yuhao Li, Mohammed Zumri, Jean Lahoud, Rao Muhammad Anwer, Hisham Cholakkal, Ivan Laptev, Mubarak Shah, Fahad Shahbaz Khan, Salman Khan,
- Abstract summary: We propose a comprehensive framework for advancing step-by-step visual reasoning in large language models.<n>We introduce a visual reasoning benchmark specifically designed to evaluate multi-step reasoning tasks.<n>Second, we propose a novel metric that assesses visual reasoning quality at the granularity of individual steps.<n>Third, we present a new multimodal visual reasoning model, named LlamaV-o1, trained using a multi-step curriculum learning approach.
- Score: 103.0226977561914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning is a fundamental capability for solving complex multi-step problems, particularly in visual contexts where sequential step-wise understanding is essential. Existing approaches lack a comprehensive framework for evaluating visual reasoning and do not emphasize step-wise problem-solving. To this end, we propose a comprehensive framework for advancing step-by-step visual reasoning in large language models (LMMs) through three key contributions. First, we introduce a visual reasoning benchmark specifically designed to evaluate multi-step reasoning tasks. The benchmark presents a diverse set of challenges with eight different categories ranging from complex visual perception to scientific reasoning with over 4k reasoning steps in total, enabling robust evaluation of LLMs' abilities to perform accurate and interpretable visual reasoning across multiple steps. Second, we propose a novel metric that assesses visual reasoning quality at the granularity of individual steps, emphasizing both correctness and logical coherence. The proposed metric offers deeper insights into reasoning performance compared to traditional end-task accuracy metrics. Third, we present a new multimodal visual reasoning model, named LlamaV-o1, trained using a multi-step curriculum learning approach, where tasks are progressively organized to facilitate incremental skill acquisition and problem-solving. The proposed LlamaV-o1 is designed for multi-step reasoning and learns step-by-step through a structured training paradigm. Extensive experiments show that our LlamaV-o1 outperforms existing open-source models and performs favorably against close-source proprietary models. Compared to the recent Llava-CoT, our LlamaV-o1 achieves an average score of 67.3 with an absolute gain of 3.8\% across six benchmarks while being 5 times faster during inference scaling. Our benchmark, model, and code are publicly available.
Related papers
- VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models [121.03333569013148]
We introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories.
These types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives.
Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans.
arXiv Detail & Related papers (2025-04-21T17:59:53Z) - MindGYM: Enhancing Vision-Language Models via Synthetic Self-Challenging Questions [37.60935581067836]
MindGYM is a framework that enhances large vision-language models (VLMs) through synthetic self-challenging questions.
MindGYM achieves high data efficiency (e.g., +16% gains on MathVision-Mini with only 400 samples), computational efficiency (reducing both training and inference costs), and robust generalization across tasks.
arXiv Detail & Related papers (2025-03-12T16:03:03Z) - Graph-Augmented Reasoning: Evolving Step-by-Step Knowledge Graph Retrieval for LLM Reasoning [55.6623318085391]
Recent large language model (LLM) reasoning suffers from limited domain knowledge, susceptibility to hallucinations, and constrained reasoning depth.
This paper presents the first investigation into integrating step-wise knowledge graph retrieval with step-wise reasoning.
We propose KG-RAR, a framework centered on process-oriented knowledge graph construction, a hierarchical retrieval strategy, and a universal post-retrieval processing and reward model.
arXiv Detail & Related papers (2025-03-03T15:20:41Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASON is a logic-puzzle benchmark for evaluation of large language models' reasoning capabilities.
We introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move.
We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
arXiv Detail & Related papers (2025-02-27T16:23:25Z) - VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning [63.0285363282581]
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information.
We introduce VOILA, a benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning.
We reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning.
arXiv Detail & Related papers (2025-02-25T23:36:19Z) - LLaVA-CoT: Let Vision Language Models Reason Step-by-Step [36.042551817732964]
We introduce LLaVA-CoT, a novel VLM designed to conduct autonomous multistage reasoning.<n>Unlike chain-of-thought prompting, LLaVA-CoT independently engages in sequential stages of summarization, visual interpretation, logical reasoning, and conclusion generation.<n>With only 100k training samples and a simple yet effective inference time scaling method, LLaVA-CoT not only outperforms its base model by 7.4% on a wide range of multimodal reasoning benchmarks.
arXiv Detail & Related papers (2024-11-15T18:58:31Z) - ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom [40.904175628582855]
We introduce a novel visual reasoning framework named ProReason.
ProReason features multi-run proactive perception and decoupled vision-reasoning capabilities.
Our experiments demonstrate that ProReason outperforms both existing multi-step reasoning frameworks and passive peer methods.
arXiv Detail & Related papers (2024-10-18T03:22:06Z) - Multi-LogiEval: Towards Evaluating Multi-Step Logical Reasoning Ability of Large Language Models [46.26140720993383]
Multi-LogiEval is a comprehensive evaluation dataset encompassing multi-step logical reasoning with various inference rules and depths.
We conduct evaluations on a range of Large Language Models including GPT-4, ChatGPT, Gemini-Pro, Yi, Orca, and Mistral.
arXiv Detail & Related papers (2024-06-24T23:02:56Z) - Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs [83.24033574914425]
We present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving.
Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information.
Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks.
arXiv Detail & Related papers (2024-06-20T17:54:03Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - Resprompt: Residual Connection Prompting Advances Multi-Step Reasoning in Large Language Models [73.4425450752596]
Chain-of-thought (CoT) prompting has impressively unlocked the reasoning potential of large language models (LLMs)
Yet, the standard CoT is less effective in problems demanding multiple reasoning steps.
We propose RESPROMPT, a new prompting strategy that advances multi-step reasoning in LLMs.
arXiv Detail & Related papers (2023-10-07T08:56:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.