論文の概要: Generating and Detecting Various Types of Fake Image and Audio Content: A Review of Modern Deep Learning Technologies and Tools
- arxiv url: http://arxiv.org/abs/2501.06227v1
- Date: Tue, 07 Jan 2025 16:44:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 17:24:49.302277
- Title: Generating and Detecting Various Types of Fake Image and Audio Content: A Review of Modern Deep Learning Technologies and Tools
- Title(参考訳): 各種フェイク画像・音声コンテンツの生成と検出 : 最新のディープラーニング技術とツールの概観
- Authors: Arash Dehghani, Hossein Saberi,
- Abstract要約: 本稿では,ディープフェイクの発生・検出技術について概観する。
ディープフェイクはプライバシー、セキュリティ、民主主義に重大な脅威をもたらす。
本研究では,顔交換,音声変換,再現,唇同期など,様々なディープフェイク手法について検討する。
- 参考スコア(独自算出の注目度): 1.3812010983144802
- License:
- Abstract: This paper reviews the state-of-the-art in deepfake generation and detection, focusing on modern deep learning technologies and tools based on the latest scientific advancements. The rise of deepfakes, leveraging techniques like Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), Diffusion models and other generative models, presents significant threats to privacy, security, and democracy. This fake media can deceive individuals, discredit real people and organizations, facilitate blackmail, and even threaten the integrity of legal, political, and social systems. Therefore, finding appropriate solutions to counter the potential threats posed by this technology is essential. We explore various deepfake methods, including face swapping, voice conversion, reenactment and lip synchronization, highlighting their applications in both benign and malicious contexts. The review critically examines the ongoing "arms race" between deepfake generation and detection, analyzing the challenges in identifying manipulated contents. By examining current methods and highlighting future research directions, this paper contributes to a crucial understanding of this rapidly evolving field and the urgent need for robust detection strategies to counter the misuse of this powerful technology. While focusing primarily on audio, image, and video domains, this study allows the reader to easily grasp the latest advancements in deepfake generation and detection.
- Abstract(参考訳): 本稿では,最新の科学的進歩に基づく最新の深層学習技術とツールに着目し,深層学習と検出の最先端技術について概説する。
ディープフェイクの台頭は、変動オートエンコーダ(VAE)、ジェネレーティブ・アドバーサリアル・ネットワーク(GAN)、拡散モデルやその他のジェネレーティブ・モデルといった技術を活用し、プライバシ、セキュリティ、民主主義に対する重大な脅威を提示している。
この偽のメディアは個人を騙し、現実の人間や組織を軽視し、脅迫を助長し、法律、政治、社会システムの完全性を脅かす。
したがって、この技術によって引き起こされる潜在的な脅威に対抗するための適切な解決策を見つけることが不可欠である。
我々は,顔交換,音声変換,再現性,唇の同期といった様々なディープフェイク手法について検討し,良識と悪意の両方の文脈におけるそれらの応用を強調した。
このレビューは、ディープフェイク生成と検出の間の進行中の「武器レース」を批判的に検証し、操作されたコンテンツを特定する際の課題を分析する。
本研究は,現在の手法を検証し,今後の研究の方向性を明らかにすることによって,この急速に発展する分野に対する重要な理解と,この強力な技術の誤用に対処する堅牢な検出戦略の必要性に寄与する。
本研究は,主に音声,画像,ビデオ領域に着目しながら,ディープフェイク生成と検出の最新の進歩を容易に把握することを可能にする。
関連論文リスト
- Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
ディープラーニングは様々な分野に適用され、ディープフェイク検出への影響は例外ではない。
ディープフェイク(英: Deepfakes)は、政治的偽造、フィッシング、スランダリング、偽情報の拡散に偽装的に使用できる、偽物だが現実的な合成コンテンツである。
本稿では,ディープフェイク検出戦略の有効性を改善し,サイバーセキュリティとメディアの整合性に関する今後の研究を導くことを目的とする。
論文 参考訳(メタデータ) (2024-11-12T09:02:11Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
ディープラーニングにより、高忠実度顔画像やビデオの作成や操作が可能になった。
この技術はディープフェイクとしても知られ、劇的な進歩を遂げ、ソーシャルメディアで人気を博している。
ディープフェイクのリスクを低減するため、強力な偽造検出方法を開発することが望ましい。
論文 参考訳(メタデータ) (2024-09-22T01:42:01Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に影響を与えている。
ディープフェイク検出は、微妙な矛盾やアーティファクトを機械学習技術で識別することに焦点を当て、研究の不可欠な領域となっている。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
論文 参考訳(メタデータ) (2024-08-01T08:57:47Z) - The Tug-of-War Between Deepfake Generation and Detection [4.62070292702111]
マルチモーダル生成モデルは急速に進化しており、現実的なビデオやオーディオの生成が急増している。
ディープフェイクビデオは、個人を説得力を持って偽造することができるが、悪用の可能性から特に注目を集めている。
本研究では,ディープフェイク映像の生成と検出の両面を考察し,効果的な対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-07-08T17:49:41Z) - Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey [40.11614155244292]
AI生成メディアがより現実的になるにつれて、誤情報を拡散したり、身元確認詐欺を犯したりする危険性が高まっている。
この研究は、従来の単一モダリティ手法から、音声・視覚・テキスト・視覚シナリオを扱う高度なマルチモーダルアプローチへの進化を辿る。
私たちの知る限りでは、この種の調査はこれが初めてである。
論文 参考訳(メタデータ) (2024-06-11T05:48:04Z) - Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfakeは、特定の条件下で非常にリアルな顔画像やビデオを作成するための技術だ。
この調査は、ディープフェイクの発生と検出の最新の展開を包括的にレビューする。
本研究では, 顔交換, 顔再現, 話し顔生成, 顔属性編集の4つの代表的なディープフェイク分野の研究に焦点をあてる。
論文 参考訳(メタデータ) (2024-03-26T17:12:34Z) - NPVForensics: Jointing Non-critical Phonemes and Visemes for Deepfake
Detection [50.33525966541906]
既存のマルチモーダル検出手法は、Deepfakeビデオを公開するために、音声と視覚の不整合をキャプチャする。
NPVForensics と呼ばれる非臨界音素とビセムの相関関係を抽出する新しいディープフェイク検出法を提案する。
我々のモデルは、微調整で下流のDeepfakeデータセットに容易に適応できる。
論文 参考訳(メタデータ) (2023-06-12T06:06:05Z) - Fighting Malicious Media Data: A Survey on Tampering Detection and
Deepfake Detection [115.83992775004043]
近年のディープラーニング、特に深層生成モデルの発展により、知覚的に説得力のある画像や動画を低コストで制作するための扉が開かれた。
本稿では,現在のメディアタンパリング検出手法を概観し,今後の研究の課題と動向について論じる。
論文 参考訳(メタデータ) (2022-12-12T02:54:08Z) - Using Deep Learning to Detecting Deepfakes [0.0]
ディープフェイク(Deepfakes)とは、ある人物の顔を別のコンピュータが生成した顔に置き換えるビデオまたは画像である。
このオンライン脅威に対抗するために、研究者たちはディープフェイクを検出するモデルを開発した。
本研究では、ディープラーニングアルゴリズムを用いて、この略奪的な脅威に対処する様々なディープフェイク検出モデルについて検討する。
論文 参考訳(メタデータ) (2022-07-27T17:05:16Z) - Deepfakes Generation and Detection: State-of-the-art, open challenges,
countermeasures, and way forward [2.15242029196761]
不正情報、リベンジポルノ、金融詐欺、詐欺、政府機能を妨害するディープフェイクを発生させることが可能である。
オーディオとビデオの両方のディープフェイクの検出と生成のアプローチをレビューする試みは行われていない。
本稿では、deepfake生成のための既存のツールと機械学習(ml)ベースのアプローチの包括的なレビューと詳細な分析を提供する。
論文 参考訳(メタデータ) (2021-02-25T18:26:50Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。