Quantum Down Sampling Filter for Variational Auto-encoder
- URL: http://arxiv.org/abs/2501.06259v2
- Date: Thu, 30 Jan 2025 00:31:45 GMT
- Title: Quantum Down Sampling Filter for Variational Auto-encoder
- Authors: Farina Riaz, Fakhar Zaman, Hajime Suzuki, Sharif Abuadbba, David Nguyen,
- Abstract summary: Variational Autoencoders (VAEs) are essential tools in generative modeling and image reconstruction.
This study aims to improve the quality of reconstructed images by enhancing their resolution and preserving finer details.
We propose a hybrid model that combines quantum computing techniques in the VAE encoder with convolutional neural networks (CNNs) in the decoder.
- Score: 0.504868948270058
- License:
- Abstract: Variational Autoencoders (VAEs) are essential tools in generative modeling and image reconstruction, with their performance heavily influenced by the encoder-decoder architecture. This study aims to improve the quality of reconstructed images by enhancing their resolution and preserving finer details, particularly when working with low-resolution inputs (16x16 pixels), where traditional VAEs often yield blurred or in-accurate results. To address this, we propose a hybrid model that combines quantum computing techniques in the VAE encoder with convolutional neural networks (CNNs) in the decoder. By upscaling the resolution from 16x16 to 32x32 during the encoding process, our approach evaluates how the model reconstructs images with enhanced resolution while maintaining key features and structures. This method tests the model's robustness in handling image reconstruction and its ability to preserve essential details despite training on lower-resolution data. We evaluate our proposed down sampling filter for Quantum VAE (Q-VAE) on the MNIST and USPS datasets and compare it with classical VAEs and a variant called Classical Direct Passing VAE (CDP-VAE), which uses windowing pooling filters in the encoding process. Performance is assessed using metrics such as the Frechet Inception Distance (FID) and Mean Squared Error (MSE), which measure the fidelity of reconstructed images. Our results demonstrate that the Q-VAE consistently outperforms both the Classical VAE and CDP-VAE, achieving significantly lower FID and MSE scores. Additionally, CDP-VAE yields better performance than C-VAE. These findings highlight the potential of quantum-enhanced VAEs to improve image reconstruction quality by enhancing resolution and preserving essential features, offering a promising direction for future applications in computer vision and synthetic data generation.
Related papers
- Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-reference point cloud quality assessment (NR-PCQA) aims to automatically evaluate the perceptual quality of distorted point clouds without available reference.
We propose a novel contrastive pre-training framework tailored for PCQA (CoPA)
Our method outperforms the state-of-the-art PCQA methods on popular benchmarks.
arXiv Detail & Related papers (2024-03-15T07:16:07Z) - Enhancing a Convolutional Autoencoder with a Quantum Approximate
Optimization Algorithm for Image Noise Reduction [0.0]
Many convolutional autoencoder algorithms have proven effective in image denoising.
This study introduces a quantum convolutional autoencoder (QCAE) method for improved image denoising.
arXiv Detail & Related papers (2024-01-12T04:35:55Z) - ConvNeXt-ChARM: ConvNeXt-based Transform for Efficient Neural Image
Compression [18.05997169440533]
We propose ConvNeXt-ChARM, an efficient ConvNeXt-based transform coding framework, paired with a compute-efficient channel-wise auto-regressive auto-regressive.
We show that ConvNeXt-ChARM brings consistent and significant BD-rate (PSNR) reductions estimated on average to 5.24% and 1.22% over the versatile video coding (VVC) reference encoder (VTM-18.0) and the state-of-the-art learned image compression method SwinT-ChARM.
arXiv Detail & Related papers (2023-07-12T11:45:54Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
We propose an absolute image compression transformer (ICT) for neural image compression (NIC)
ICT captures both global and local contexts from the latent representations and better parameterize the distribution of the quantized latents.
Our framework significantly improves the trade-off between coding efficiency and decoder complexity over the versatile video coding (VVC) reference encoder (VTM-18.0) and the neural SwinT-ChARM.
arXiv Detail & Related papers (2023-07-05T13:17:14Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Patch Similarity Aware Data-Free Quantization for Vision Transformers [2.954890575035673]
We propose PSAQ-ViT, a Patch Similarity Aware data-free Quantization framework for Vision Transformers.
We analyze the self-attention module's properties and reveal a general difference (patch similarity) in its processing of Gaussian noise and real images.
Experiments and ablation studies are conducted on various benchmarks to validate the effectiveness of PSAQ-ViT.
arXiv Detail & Related papers (2022-03-04T11:47:20Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - NVAE: A Deep Hierarchical Variational Autoencoder [102.29977384039805]
We propose a deep hierarchical VAE built for image generation using depth-wise separable convolutions and batch normalization.
We show that NVAE achieves state-of-the-art results among non-autoregressive likelihood-based models.
To the best of our knowledge, NVAE is the first successful VAE applied to natural images as large as 256$times $256 pixels.
arXiv Detail & Related papers (2020-07-08T04:56:56Z) - Neuromorphologicaly-preserving Volumetric data encoding using VQ-VAE [4.221619479687068]
We show a VQ-VAE inspired network can efficiently encode a full-resolution 3D brain volume, compressing the data to $0.825%$ of the original size while maintaining image fidelity.
We then demonstrate that VQ-VAE decoded images preserve the morphological characteristics of the original data through voxel-based morphology and segmentation experiments.
arXiv Detail & Related papers (2020-02-13T18:18:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.