Quantum Down Sampling Filter for Variational Auto-encoder
- URL: http://arxiv.org/abs/2501.06259v3
- Date: Thu, 06 Mar 2025 23:10:14 GMT
- Title: Quantum Down Sampling Filter for Variational Auto-encoder
- Authors: Farina Riaz, Fakhar Zaman, Hajime Suzuki, Sharif Abuadbba, David Nguyen,
- Abstract summary: Variational autoencoders (VAEs) are fundamental for generative modeling and image reconstruction.<n>This study introduces a hybrid model, quantum variational autoencoder (Q-VAE)<n>Q-VAE integrates quantum encoding within the encoder while utilizing fully connected layers to extract meaningful representations.
- Score: 0.504868948270058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational autoencoders (VAEs) are fundamental for generative modeling and image reconstruction, yet their performance often struggles to maintain high fidelity in reconstructions. This study introduces a hybrid model, quantum variational autoencoder (Q-VAE), which integrates quantum encoding within the encoder while utilizing fully connected layers to extract meaningful representations. The decoder uses transposed convolution layers for up-sampling. The Q-VAE is evaluated against the classical VAE and the classical direct-passing VAE, which utilizes windowed pooling filters. Results on the MNIST and USPS datasets demonstrate that Q-VAE consistently outperforms classical approaches, achieving lower Fr\'echet inception distance scores, thereby indicating superior image fidelity and enhanced reconstruction quality. These findings highlight the potential of Q-VAE for high-quality synthetic data generation and improved image reconstruction in generative models.
Related papers
- Pathology Image Compression with Pre-trained Autoencoders [52.208181380986524]
Whole Slide Images in digital histopathology pose significant storage, transmission, and computational efficiency challenges.
Standard compression methods, such as JPEG, reduce file sizes but fail to preserve fine-grained phenotypic details critical for downstream tasks.
In this work, we repurpose autoencoders (AEs) designed for Latent Diffusion Models as an efficient learned compression framework for pathology images.
arXiv Detail & Related papers (2025-03-14T17:01:17Z) - IQPFR: An Image Quality Prior for Blind Face Restoration and Beyond [56.99331967165238]
Blind Face Restoration (BFR) addresses the challenge of reconstructing degraded low-quality (LQ) facial images into high-quality (HQ) outputs.
We propose a novel framework that incorporates an Image Quality Prior (IQP) derived from No-Reference Image Quality Assessment (NR-IQA) models.
Our method outperforms state-of-the-art techniques across multiple benchmarks.
arXiv Detail & Related papers (2025-03-12T11:39:51Z) - EQ-VAE: Equivariance Regularized Latent Space for Improved Generative Image Modeling [11.075247758198762]
Latent generative models rely on an autoencoder to compress images into a latent space, followed by a generative model to learn the latent distribution.
We propose EQ-VAE, a simple regularization approach that enforces equivariance in the latent space, reducing its complexity without degrading reconstruction quality.
We enhance the performance of several state-of-the-art generative models, including DiT, SiT, REPA and MaskGIT, achieving a 7 speedup on DiT-XL/2 with only five epochs of SD-VAE fine-tuning.
arXiv Detail & Related papers (2025-02-13T17:21:51Z) - Epsilon-VAE: Denoising as Visual Decoding [61.29255979767292]
In generative modeling, tokenization simplifies complex data into compact, structured representations, creating a more efficient, learnable space.
Current visual tokenization methods rely on a traditional autoencoder framework, where the encoder compresses data into latent representations, and the decoder reconstructs the original input.
We propose denoising as decoding, shifting from single-step reconstruction to iterative refinement. Specifically, we replace the decoder with a diffusion process that iteratively refines noise to recover the original image, guided by the latents provided by the encoder.
arXiv Detail & Related papers (2024-10-05T08:27:53Z) - VAE-QWGAN: Improving Quantum GANs for High Resolution Image Generation [4.297070083645049]
The VAE-QWGAN integrates the VAE decoder and QGAN generator into a single quantum model with shared parameters.
We evaluate the model's performance on MNIST/Fashion-MNIST datasets, and demonstrate improved quality and diversity of generated images.
arXiv Detail & Related papers (2024-09-16T14:52:22Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - In-Domain GAN Inversion for Faithful Reconstruction and Editability [132.68255553099834]
We propose in-domain GAN inversion, which consists of a domain-guided domain-regularized and a encoder to regularize the inverted code in the native latent space of the pre-trained GAN model.
We make comprehensive analyses on the effects of the encoder structure, the starting inversion point, as well as the inversion parameter space, and observe the trade-off between the reconstruction quality and the editing property.
arXiv Detail & Related papers (2023-09-25T08:42:06Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
We propose an absolute image compression transformer (ICT) for neural image compression (NIC)
ICT captures both global and local contexts from the latent representations and better parameterize the distribution of the quantized latents.
Our framework significantly improves the trade-off between coding efficiency and decoder complexity over the versatile video coding (VVC) reference encoder (VTM-18.0) and the neural SwinT-ChARM.
arXiv Detail & Related papers (2023-07-05T13:17:14Z) - MoVQ: Modulating Quantized Vectors for High-Fidelity Image Generation [41.029441562130984]
Two-stage Vector Quantized (VQ) generative models allow for synthesizing high-fidelity and high-resolution images.
Our proposed modulated VQGAN is able to greatly improve the reconstructed image quality as well as provide high-fidelity image generation.
arXiv Detail & Related papers (2022-09-19T13:26:51Z) - Hierarchical Residual Learning Based Vector Quantized Variational
Autoencoder for Image Reconstruction and Generation [19.92324010429006]
We propose a multi-layer variational autoencoder method, we call HR-VQVAE, that learns hierarchical discrete representations of the data.
We evaluate our method on the tasks of image reconstruction and generation.
arXiv Detail & Related papers (2022-08-09T06:04:25Z) - Exploring Resolution and Degradation Clues as Self-supervised Signal for
Low Quality Object Detection [77.3530907443279]
We propose a novel self-supervised framework to detect objects in degraded low resolution images.
Our methods has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-08-05T09:36:13Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - NVAE: A Deep Hierarchical Variational Autoencoder [102.29977384039805]
We propose a deep hierarchical VAE built for image generation using depth-wise separable convolutions and batch normalization.
We show that NVAE achieves state-of-the-art results among non-autoregressive likelihood-based models.
To the best of our knowledge, NVAE is the first successful VAE applied to natural images as large as 256$times $256 pixels.
arXiv Detail & Related papers (2020-07-08T04:56:56Z) - Hierarchical Quantized Autoencoders [3.9146761527401432]
We motivate the use of a hierarchy of Vector Quantized Variencoders (VQ-VAEs) to attain high factors of compression.
We show that a combination of quantization and hierarchical latent structure aids likelihood-based image compression.
Our resulting scheme produces a Markovian series of latent variables that reconstruct images of high-perceptual quality.
arXiv Detail & Related papers (2020-02-19T11:26:34Z) - Neuromorphologicaly-preserving Volumetric data encoding using VQ-VAE [4.221619479687068]
We show a VQ-VAE inspired network can efficiently encode a full-resolution 3D brain volume, compressing the data to $0.825%$ of the original size while maintaining image fidelity.
We then demonstrate that VQ-VAE decoded images preserve the morphological characteristics of the original data through voxel-based morphology and segmentation experiments.
arXiv Detail & Related papers (2020-02-13T18:18:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.