論文の概要: CNN-powered micro- to macro-scale flow modeling in deformable porous media
- arxiv url: http://arxiv.org/abs/2501.06466v1
- Date: Sat, 11 Jan 2025 07:36:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:26:38.368912
- Title: CNN-powered micro- to macro-scale flow modeling in deformable porous media
- Title(参考訳): 変形性多孔質媒体におけるCNNを利用したマイクロ・マクロフローモデリング
- Authors: Yousef Heider, Fadi Aldakheel, Wolfgang Ehlers,
- Abstract要約: 本研究は, 変形性多孔質媒質中のマクロ内在透過性テンソルを, 実マイクロジオメトリーのマイクロCT画像の限られたセットを用いて予測する新しい手法を提案する。
この研究の新規性は、変形および異方性流れ条件下での細孔流体の挙動を予測するために畳み込みニューラルネットワーク(CNN)を活用することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This work introduces a novel application for predicting the macroscopic intrinsic permeability tensor in deformable porous media, using a limited set of micro-CT images of real microgeometries. The primary goal is to develop an efficient, machine-learning (ML)-based method that overcomes the limitations of traditional permeability estimation techniques, which often rely on time-consuming experiments or computationally expensive fluid dynamics simulations. The novelty of this work lies in leveraging Convolutional Neural Networks (CNN) to predict pore-fluid flow behavior under deformation and anisotropic flow conditions. Particularly, the described approach employs binarized CT images of porous micro-structure as inputs to predict the symmetric second-order permeability tensor, a critical parameter in continuum porous media flow modeling. The methodology comprises four key steps: (1) constructing a dataset of CT images from Bentheim sandstone at different volumetric strain levels; (2) performing pore-scale simulations of single-phase flow using the lattice Boltzmann method (LBM) to generate permeability data; (3) training the CNN model with the processed CT images as inputs and permeability tensors as outputs; and (4) exploring techniques to improve model generalization, including data augmentation and alternative CNN architectures. Examples are provided to demonstrate the CNN's capability to accurately predict the permeability tensor, a crucial parameter in various disciplines such as geotechnical engineering, hydrology, and material science. An exemplary source code is made available for interested readers.
- Abstract(参考訳): 本研究は, 変形性多孔質媒質中のマクロ内在透過性テンソルを, 実マイクロジオメトリーのマイクロCT画像の限られたセットを用いて予測する新しい手法を提案する。
第一の目標は、時間を要する実験や計算コストのかかる流体力学シミュレーションに依存する従来の透水性推定手法の限界を克服する効率的な機械学習(ML)ベースの手法を開発することである。
この研究の新規性は、変形および異方性流れ条件下での細孔流体の挙動を予測するために畳み込みニューラルネットワーク(CNN)を活用することである。
特に, 連続多孔質メディアフローモデリングにおける臨界パラメータである対称二階透水率テンソルの予測には, 多孔質マイクロ構造の2次元CT像を入力として用いた。
本手法は,(1)ベンテイム砂岩から異なる体積ひずみレベルでCT画像のデータセットを構築すること,(2)格子ボルツマン法(LBM)を用いて単一相流の細孔スケールシミュレーションを行い,透水性データを生成すること,(3)CT画像を入力とし,透水性テンソルとしてCNNモデルをトレーニングすること,(4)データ拡張や代替CNNアーキテクチャを含むモデル一般化を改善する技術を検討すること,の4段階からなる。
CNNが透水性テンソルを正確に予測する能力を示すための例として、地球工学、水文学、材料科学など様々な分野において重要なパラメータである。
サンプルソースコードは、興味のある読者のために公開されている。
関連論文リスト
- Learning Pore-scale Multi-phase Flow from Experimental Data with Graph Neural Network [2.2101344151283944]
現在の数値モデルは、しばしば実験で観測された複雑な細孔スケールの物理学を正確に捉えることができない。
我々は,マイクロCT実験データを用いて,グラフニューラルネットワークを用いた多孔質流体の流れを直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-11-21T15:01:17Z) - Predicting Wall Thickness Changes in Cold Forging Processes: An Integrated FEM and Neural Network approach [2.7763199324745966]
まず、ノイズ処理と影響パラメータの徹底的な分析を行う。
次に、異なるプロセスパラメータの効果をよりよく分析するために、有限要素法シミュレーションをセットアップします。
本稿では,グラフニューラルネットワークを代理モデルとして設計した新しいモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-20T14:42:53Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
フロー画像超解像(FISR)は、低分解能フロー画像から高分解能乱流速度場を復元することを目的としている。
既存のFISR法は主に自然画像パターンのフロー画像を処理する。
第一流れの視覚特性インフォームドFISRアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-29T06:48:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - A microstructure estimation Transformer inspired by sparse
representation for diffusion MRI [11.761543033212797]
ダウンサンプルq空間データを用いたdMRIによる微細構造推定のためのTransformerに基づく学習ベースフレームワークを提案する。
提案手法は,スキャン時間で最大11.25倍の加速を実現し,他の最先端の学習手法よりも優れていた。
論文 参考訳(メタデータ) (2022-05-13T05:14:22Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
本稿では, 生体組織モデリングにおけるデータ駆動型相関について述べる。これは, 未知の負荷シナリオ下でのデジタル画像相関(DIC)測定に基づいて変位場を予測することを目的としている。
ブタ三尖弁リーフレット上の多軸延伸プロトコルのDIC変位追跡測定から材料データベースを構築した。
材料応答は、負荷から結果の変位場への解演算子としてモデル化され、材料特性はデータから暗黙的に学習され、自然にネットワークパラメータに埋め込まれる。
論文 参考訳(メタデータ) (2022-04-01T04:56:41Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、古典格子ボルツマン法(LBM)によって通常生成される透過性ラベルからなる。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
論文 参考訳(メタデータ) (2021-09-04T08:43:19Z) - Moser Flow: Divergence-based Generative Modeling on Manifolds [49.04974733536027]
Moser Flow (MF) は連続正規化フロー(CNF)ファミリーにおける新しい生成モデルのクラスである
MFは、訓練中にODEソルバを介して呼び出しやバックプロパゲートを必要としない。
一般曲面からのサンプリングにおけるフローモデルの利用を初めて実演する。
論文 参考訳(メタデータ) (2021-08-18T09:00:24Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process(INP)は、シミュレーションとアクティブな学習アプローチのためのディープラーニングフレームワークである。
能動的学習のために,NPベースモデルの潜時空間で計算された新しい取得関数Latent Information Gain (LIG)を提案する。
その結果,STNPは学習環境のベースラインを上回り,LIGは能動学習の最先端を達成していることがわかった。
論文 参考訳(メタデータ) (2021-06-05T01:31:51Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。