論文の概要: Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS
- arxiv url: http://arxiv.org/abs/2109.01818v1
- Date: Sat, 4 Sep 2021 08:43:19 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 09:39:42.478884
- Title: Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS
- Title(参考訳): DNSに基づく物理インフォームドCNNによる3次元マイクロCT画像の透過性の推定
- Authors: Stephan G\"arttner and Faruk O. Alpak and Andreas Meier and Nadja Ray
and Florian Frank
- Abstract要約: 本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、古典格子ボルツマン法(LBM)によって通常生成される透過性ラベルからなる。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
- 参考スコア(独自算出の注目度): 1.6274397329511197
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In recent years, convolutional neural networks (CNNs) have experienced an
increasing interest for their ability to perform fast approximation of
effective hydrodynamic parameters in porous media research and applications.
This paper presents a novel methodology for permeability prediction from
micro-CT scans of geological rock samples. The training data set for CNNs
dedicated to permeability prediction consists of permeability labels that are
typically generated by classical lattice Boltzmann methods (LBM) that simulate
the flow through the pore space of the segmented image data. We instead perform
direct numerical simulation (DNS) by solving the stationary Stokes equation in
an efficient and distributed-parallel manner. As such, we circumvent the
convergence issues of LBM that frequently are observed on complex pore
geometries, and therefore, improve on the generality and accuracy of our
training data set. Using the DNS-computed permeabilities, a physics-informed
CNN PhyCNN) is trained by additionally providing a tailored characteristic
quantity of the pore space. More precisely, by exploiting the connection to
flow problems on a graph representation of the pore space, additional
information about confined structures is provided to the network in terms of
the maximum flow value, which is the key innovative component of our workflow.
As a result, unprecedented prediction accuracy and robustness are observed for
a variety of sandstone samples from archetypal rock formations.
- Abstract(参考訳): 近年、畳み込みニューラルネットワーク(CNN)は、多孔質メディア研究や応用における効果的な流体力学パラメータの高速な近似を行う能力への関心が高まっている。
本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、典型的な古典格子ボルツマン法(LBM)によって生成される透過性ラベルからなり、セグメント化された画像データの細孔空間を流れる流れをシミュレートする。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
そこで我々は,複雑な細孔ジオメトリで頻繁に観測されるlbmの収束問題を回避し,トレーニングデータセットの汎用性と精度を向上させる。
DNS計算された透過性を用いて、物理インフォームドCNN PhyCNN)は、細孔空間の調整された特性量を追加して訓練される。
より正確には、細孔空間のグラフ表現におけるフロー問題への接続を利用して、ワークフローの重要な革新的要素である最大フロー値の観点から、制限された構造に関する追加情報をネットワークに提供する。
その結果,古生代岩層から採取した様々な砂岩試料に対して,前例のない予測精度とロバスト性が確認された。
関連論文リスト
- CNN-powered micro- to macro-scale flow modeling in deformable porous media [0.0]
本研究は, 変形性多孔質媒質中のマクロ内在透過性テンソルを, 実マイクロジオメトリーのマイクロCT画像の限られたセットを用いて予測する新しい手法を提案する。
この研究の新規性は、変形および異方性流れ条件下での細孔流体の挙動を予測するために畳み込みニューラルネットワーク(CNN)を活用することである。
論文 参考訳(メタデータ) (2025-01-11T07:36:41Z) - Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
本研究では,グラフニューラルネットワーク(GNN)とReynolds-Averaged Navier Stokes(RANS)方程式を組み合わせた新しいハイブリッド手法を提案する。
その結果, 純粋なデータ駆動モデルと比較して, 再構成平均流の精度は著しく向上した。
論文 参考訳(メタデータ) (2024-11-14T14:31:52Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Physics-informed neural networks for gravity currents reconstruction
from limited data [0.0]
本研究では, 物理インフォームドニューラルネットワーク(PINN)を用いた非定常重力電流の3次元再構成について検討した。
PINNコンテキストでは、目的関数がネットワーク予測と観測データとのミスマッチをペナルティ化するニューラルネットワークをトレーニングすることにより、フローフィールドを再構築する。
論文 参考訳(メタデータ) (2022-11-03T11:27:29Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
Rayleigh-B'enard乱流流に対するPINNのサーロゲートモデルの使用を検討する。
標準ピンの精度が低いゾーンであるトレーニング境界に近い正規化として、どのように機能するかを示す。
50億のDNS座標全体のサロゲートの予測精度は、相対的なL2ノルムで[0.3% -- 4%]の範囲のすべてのフロー変数のエラーをもたらします。
論文 参考訳(メタデータ) (2021-03-05T09:48:57Z) - Neural Particle Image Velocimetry [4.416484585765027]
本稿では,この問題に適応した畳み込みニューラルネットワーク,すなわちボリューム対応ネットワーク(VCN)を紹介する。
ネットワークは、合成データと実フローデータの両方を含むデータセット上で、徹底的にトレーニングされ、テストされる。
解析の結果,提案手法は現場における他の最先端手法と同等の精度を保ちながら,効率の向上を図っている。
論文 参考訳(メタデータ) (2021-01-28T12:03:39Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。