論文の概要: First Token Probability Guided RAG for Telecom Question Answering
- arxiv url: http://arxiv.org/abs/2501.06468v1
- Date: Sat, 11 Jan 2025 07:47:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:29:03.356070
- Title: First Token Probability Guided RAG for Telecom Question Answering
- Title(参考訳): テレコム質問応答のための第1トーケン確率ガイド付きRAG
- Authors: Tingwei Chen, Jiayi Chen, Zijian Zhao, Haolong Chen, Liang Zhang, Guangxu Zhu,
- Abstract要約: Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) にドメイン固有情報を組み込むことにおいて、明確な優位性を示している。
本稿では,通信におけるMultiple Choice Question Answering(MCQA)の課題に対処する,新しいトークン確率ガイド付きRAGフレームワークを提案する。
- 参考スコア(独自算出の注目度): 15.854941373238226
- License:
- Abstract: Large Language Models (LLMs) have garnered significant attention for their impressive general-purpose capabilities. For applications requiring intricate domain knowledge, Retrieval-Augmented Generation (RAG) has shown a distinct advantage in incorporating domain-specific information into LLMs. However, existing RAG research has not fully addressed the challenges of Multiple Choice Question Answering (MCQA) in telecommunications, particularly in terms of retrieval quality and mitigating hallucinations. To tackle these challenges, we propose a novel first token probability guided RAG framework. This framework leverages confidence scores to optimize key hyperparameters, such as chunk number and chunk window size, while dynamically adjusting the context. Our method starts by retrieving the most relevant chunks and generates a single token as the potential answer. The probabilities of all options are then normalized to serve as confidence scores, which guide the dynamic adjustment of the context. By iteratively optimizing the hyperparameters based on these confidence scores, we can continuously improve RAG performance. We conducted experiments to validate the effectiveness of our framework, demonstrating its potential to enhance accuracy in domain-specific MCQA tasks.
- Abstract(参考訳): 大きな言語モデル(LLM)は、その印象的な汎用機能に対して大きな注目を集めている。
複雑なドメイン知識を必要とするアプリケーションでは、LLMにドメイン固有情報を組み込む際、RAG(Retrieval-Augmented Generation)が顕著な優位性を示している。
しかしながら、既存のRAG研究は、通信における多重選択質問回答(MCQA)の課題、特に検索品質や幻覚の緩和について完全には解決していない。
これらの課題に対処するために,新しいトークン確率ガイド付きRAGフレームワークを提案する。
このフレームワークは信頼性スコアを利用して、コンテキストを動的に調整しながら、チャンク番号やチャンクウィンドウサイズなどの重要なハイパーパラメータを最適化する。
我々の方法は、最も関連性の高いチャンクを取得し、潜在的な答えとして1つのトークンを生成することから始まる。
すべてのオプションの確率は正規化され、信頼スコアとして機能し、コンテキストの動的調整を導く。
これらの信頼度スコアに基づいて過パラメータを反復的に最適化することにより、RAG性能を継続的に改善することができる。
我々は,本フレームワークの有効性を検証する実験を行い,ドメイン固有のMCQAタスクの精度を高める可能性を実証した。
関連論文リスト
- Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) は、大規模言語モデル(LLM)の限界を軽減し、ドメイン固有の質問に答える手段として広く採用されている。
これまでの研究は主に、取得したデータチャンクの精度と品質を改善し、生成パイプライン全体のパフォーマンスを向上させることに重点を置いてきた。
オープンドメイン質問応答における無関係情報検索の効果について検討し,LLM出力の品質に対する顕著な有害な影響を明らかにする。
論文 参考訳(メタデータ) (2024-11-25T06:48:38Z) - SMART-RAG: Selection using Determinantal Matrices for Augmented Retrieval [40.17823569905232]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル(LLM)を大幅に改善し、正確で文脈に根ざした応答を生成する。
RAGアプローチは、クエリコンテキストの関連性のみに基づくトップランクのドキュメントを優先し、冗長性と矛盾する情報をしばしば導入する。
本稿では,RAGにおける文脈選択の最適化を目的とした,教師なしおよびトレーニング不要なフレームワークであるRAG(Mathrices for Augmented Retrieval)によるタスク応答のための選択を提案する。
論文 参考訳(メタデータ) (2024-09-21T03:03:09Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
我々は,多種多様な意図を適応的に捉えるための生成クラスタリング・改革フレームワークGenCRFを提案する。
我々はGenCRFが,nDCG@10で従来のクエリ修正SOTAを最大12%上回り,最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-09-17T05:59:32Z) - Evaluating ChatGPT on Nuclear Domain-Specific Data [0.0]
本稿では,大規模言語モデル(LLM)であるChatGPTの,高度に専門化された核データ分野におけるQ&Aタスクへの適用について検討する。
主な焦点は、キュレートされたテストデータセット上でのChatGPTのパフォーマンスの評価である。
LLMにRAGパイプラインを組み込むことにより, 性能の向上が図られた。
論文 参考訳(メタデータ) (2024-08-26T08:17:42Z) - IDEAL: Leveraging Infinite and Dynamic Characterizations of Large Language Models for Query-focused Summarization [59.06663981902496]
クエリ中心の要約(QFS)は、特定の関心事に答え、より優れたユーザ制御とパーソナライゼーションを可能にする要約を作成することを目的としている。
本稿では,LLMを用いたQFSモデル,Longthy Document Summarization,およびクエリ-LLMアライメントの2つの重要な特徴について検討する。
これらのイノベーションは、QFS技術分野における幅広い応用とアクセシビリティの道を開いた。
論文 参考訳(メタデータ) (2024-07-15T07:14:56Z) - Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check [25.63538452425097]
本稿では,対話型質問応答のための細粒度検索と自己チェックを組み込んだ対話レベルのRAG手法を提案する。
特に,本手法は,対話型質問精算器,きめ細かい検索器,自己チェックに基づく応答生成器の3つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-03-27T04:20:18Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
我々は、モデルフリーQ値ポリシー近似をPointer Networks(Ptr-Nets)と統合したハイブリッドニューラルネットワークであるPointer Q-Network(PQN)を紹介する。
実験により,本手法の有効性を実証し,不安定な環境でモデルをテストする。
論文 参考訳(メタデータ) (2023-11-05T12:03:58Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - Global Optimization of Objective Functions Represented by ReLU Networks [77.55969359556032]
ニューラルネットワークは複雑で非敵対的な関数を学ぶことができ、安全クリティカルな文脈でそれらの正しい振る舞いを保証することは困難である。
ネットワーク内の障害を見つけるための多くのアプローチ(例えば、敵の例)があるが、これらは障害の欠如を保証できない。
本稿では,最適化プロセスを検証手順に統合し,本手法よりも優れた性能を実現する手法を提案する。
論文 参考訳(メタデータ) (2020-10-07T08:19:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。