VASparse: Towards Efficient Visual Hallucination Mitigation for Large Vision-Language Model via Visual-Aware Sparsification
- URL: http://arxiv.org/abs/2501.06553v1
- Date: Sat, 11 Jan 2025 14:09:34 GMT
- Title: VASparse: Towards Efficient Visual Hallucination Mitigation for Large Vision-Language Model via Visual-Aware Sparsification
- Authors: Xianwei Zhuang, Zhihong Zhu, Yuxin Xie, Liming Liang, Yuexian Zou,
- Abstract summary: Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH)
We propose an efficient plug-and-play decoding algorithm via Visual-Aware Sparsification (VASparse)
VASparse achieves state-of-the-art performance for mitigating VH while maintaining competitive decoding speed.
- Score: 44.97217246897902
- License:
- Abstract: Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH), which significantly impedes their real-world usage. To alleviate VH, various decoding strategies have been proposed to enhance visual information. However, many of these methods may require secondary decoding and rollback, which significantly reduces inference speed. In this work, we propose an efficient plug-and-play decoding algorithm via Visual-Aware Sparsification (VASparse) from the perspective of token sparsity for mitigating VH. VASparse is inspired by empirical observations: (1) the sparse activation of attention in LVLMs, and (2) visual-agnostic tokens sparsification exacerbates VH. Based on these insights, we propose a novel token sparsification strategy that balances efficiency and trustworthiness. Specifically, VASparse implements a visual-aware token selection strategy during decoding to reduce redundant tokens while preserving visual context effectively. Additionally, we innovatively introduce a sparse-based visual contrastive decoding method to recalibrate the distribution of hallucinated outputs without the time overhead associated with secondary decoding. Subsequently, VASparse recalibrates attention scores to penalize attention sinking of LVLMs towards text tokens. Extensive experiments across four popular benchmarks confirm the effectiveness of VASparse in mitigating VH across different LVLM families without requiring additional training or post-processing. Impressively, VASparse achieves state-of-the-art performance for mitigating VH while maintaining competitive decoding speed. Code is available at https://github.com/mengchuang123/VASparse-github.
Related papers
- Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
Large Vision-Language Models (LVLMs) are prone to generating hallucinatory text responses that do not align with the given visual input.
We introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process.
arXiv Detail & Related papers (2025-02-10T03:43:55Z) - Rethinking Homogeneity of Vision and Text Tokens in Large Vision-and-Language Models [29.611769371733672]
We propose De Attention (D-Attn), a novel method that processes visual and textual embeddings differently.
D-Attn diagonalizes visual-to-visual self-attention, reducing computation from $mathcalO(|V|2)$ to $mathcalO(|V|)$ for $|V|$ visual embeddings without compromising performance.
arXiv Detail & Related papers (2025-02-04T00:46:11Z) - AdaFV: Rethinking of Visual-Language alignment for VLM acceleration [7.9213473377478865]
Some approaches to reduce the visual tokens according to the self-attention of VLMs, which are biased, result in inaccurate responses.
We propose a self-adaptive cross-modality attention mixture mechanism that dynamically leverages the effectiveness of visual saliency and text-to-image similarity.
The proposed approach achieves state-of-the-art training-free VLM acceleration performance, especially when the reduction rate is sufficiently large.
arXiv Detail & Related papers (2025-01-16T13:34:33Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.
LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.
We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - [CLS] Attention is All You Need for Training-Free Visual Token Pruning: Make VLM Inference Faster [26.025260449905577]
Existing methods assess the importance of visual tokens based on the text-visual cross-attentions in large language models (LLMs)
We introduce FasterVLM, a training-free visual token pruning method that evaluates the importance of visual tokens more accurately.
FasterVLM can prune 95% of visual tokens while maintaining 90% of the performance of LLaVA-1.5-7B.
arXiv Detail & Related papers (2024-12-02T18:57:40Z) - Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks.
LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension.
We propose LACING to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG)
arXiv Detail & Related papers (2024-11-21T16:33:30Z) - SparseVLM: Visual Token Sparsification for Efficient Vision-Language Model Inference [45.11612407862277]
In vision-language models (VLMs), visual tokens usually bear a significant amount of computational overhead despite sparsity of information in them when compared to text tokens.
We propose a text-guided training-free token optimization mechanism dubbed SparseVLM that eliminates the need of extra parameters or fine-tuning costs.
arXiv Detail & Related papers (2024-10-06T09:18:04Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs.
We introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency.
arXiv Detail & Related papers (2024-03-11T14:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.