Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding
- URL: http://arxiv.org/abs/2501.01926v1
- Date: Fri, 03 Jan 2025 17:56:28 GMT
- Title: Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding
- Authors: Jiaming Li, Jiacheng Zhang, Zequn Jie, Lin Ma, Guanbin Li,
- Abstract summary: Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.
LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.
We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
- Score: 66.06337890279839
- License:
- Abstract: Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks. Despite their success, LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content. To address this issue, some approaches have introduced inference-time interventions, such as contrastive decoding and attention rectification, to reduce overreliance on language priors. However, these approaches overlook hallucinations stemming from spurious inter-modality correlations. In this paper, we propose an Inter-Modality Correlation Calibration Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner. In this method, we design a Cross-Modal Value-Enhanced Decoding(CMVED) module to alleviate hallucination by a novel contrastive decoding mechanism. During the estimation of distorted distribution, CMVED masks the value vectors associated with significant cross-modal attention weights, which address both uni-modality overreliance and misleading inter-modality correlations. Additionally, a Content-Driven Attention Refinement(CDAR) module refines cross-modal attention weights, guiding LVLMs to focus on important visual content. Experimental results on diverse hallucination benchmarks validate the superiority of our method over existing state-of-the-art techniques in reducing hallucinations in LVLM text generation. Our code will be available at https://github.com/lijm48/IMCCD.
Related papers
- Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
Large Vision-Language Models (LVLMs) are prone to generating hallucinatory text responses that do not align with the given visual input.
We introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process.
arXiv Detail & Related papers (2025-02-10T03:43:55Z) - Mitigating Object Hallucinations in Large Vision-Language Models via Attention Calibration [22.39558434131574]
Large Vision-Language Models (LVLMs) generate responses that are not factually aligned with the visual content.
We introduce a training-free solution, Uniform Attention (UAC), that estimates the bias from single meaningless input image.
We also introduce a fine-tuning solution, Dynamic Attention (DAC), that enforces the consistent outputs wherever the object locates in the image.
arXiv Detail & Related papers (2025-02-04T03:27:38Z) - Mitigating Hallucinations in Large Vision-Language Models with Internal Fact-based Contrastive Decoding [5.424048651554831]
Internal Fact-based Contrastive Decoding (IFCD) is designed to mitigate and suppress hallucinations during the inference process of Large Visual Language Models (LVLMs)
IFCD calibrates the LVLMs' output and effectively removes the hallucinatory logits from the final predictions.
Experimental results validate that IFCD significantly alleviates both object-level and attribute-level hallucinations while achieving an average 9% accuracy improvement on POPE and 8% accuracy improvement on MME object hallucinations subset compared with direct decoding, respectively.
arXiv Detail & Related papers (2025-02-03T05:08:35Z) - Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence [69.86946427928511]
We investigate the internal mechanisms driving hallucination in large vision-language models (LVLMs)
We introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context.
We propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads.
arXiv Detail & Related papers (2024-12-18T15:29:30Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
Large Vision-Language Models (LVLMs) have demonstrated outstanding performance in multimodal task reasoning.
We propose a novel hallucination-mitigation method from the visual encoding perspective: textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfDecoding (VaLiD)
arXiv Detail & Related papers (2024-11-24T13:42:02Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models [51.70129969269271]
We introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE)
Our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs.
arXiv Detail & Related papers (2024-06-04T03:04:21Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
Over-reliance on linguistic priors has been identified as a key factor leading to hallucinations.
We propose to alleviate this problem by introducing a novel image-biased decoding technique.
Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM.
arXiv Detail & Related papers (2024-02-28T16:57:22Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
We introduce Visual Contrastive Decoding (VCD), a simple and training-free method that contrasts output distributions derived from original and distorted visual inputs.
The proposed VCD effectively reduces the over-reliance on statistical bias and unimodal priors, two essential causes of object hallucinations.
Our experiments show that VCD, without either additional training or the usage of external tools, significantly mitigates the object hallucination issue across different LVLM families.
arXiv Detail & Related papers (2023-11-28T16:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.