論文の概要: Recommending the right academic programs: An interest mining approach using BERTopic
- arxiv url: http://arxiv.org/abs/2501.06581v1
- Date: Sat, 11 Jan 2025 16:34:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:29:39.659204
- Title: Recommending the right academic programs: An interest mining approach using BERTopic
- Title(参考訳): 正しい教育プログラムの再考:BERTopicを用いた利子採掘アプローチ
- Authors: Alessandro Hill, Kalen Goo, Puneet Agarwal,
- Abstract要約: 本稿では,プログラムの内容と個人の嗜好の両方に基づいて,学生に効果的なレコメンデーションを提供する最初の情報システムを提案する。
BERTopicは、テキスト埋め込み技術を利用してトピック表現を生成する強力なトピックモデリングアルゴリズムである。
後中等学校におけるケーススタディでは,システムが即時かつ効果的な意思決定支援を提供することを示す。
- 参考スコア(独自算出の注目度): 46.133648730062035
- License:
- Abstract: Prospective students face the challenging task of selecting a university program that will shape their academic and professional careers. For decision-makers and support services, it is often time-consuming and extremely difficult to match personal interests with suitable programs due to the vast and complex catalogue information available. This paper presents the first information system that provides students with efficient recommendations based on both program content and personal preferences. BERTopic, a powerful topic modeling algorithm, is used that leverages text embedding techniques to generate topic representations. It enables us to mine interest topics from all course descriptions, representing the full body of knowledge taught at the institution. Underpinned by the student's individual choice of topics, a shortlist of the most relevant programs is computed through statistical backtracking in the knowledge map, a novel characterization of the program-course relationship. This approach can be applied to a wide range of educational settings, including professional and vocational training. A case study at a post-secondary school with 80 programs and over 5,000 courses shows that the system provides immediate and effective decision support. The presented interest topics are meaningful, leading to positive effects such as serendipity, personalization, and fairness, as revealed by a qualitative study involving 65 students. Over 98% of users indicated that the recommendations aligned with their interests, and about 94% stated they would use the tool in the future. Quantitative analysis shows the system can be configured to ensure fairness, achieving 98% program coverage while maintaining a personalization score of 0.77. These findings suggest that this real-time, user-centered, data-driven system could improve the program selection process.
- Abstract(参考訳): 先進的な学生は、学業や職業を形作る大学プログラムを選択するという難しい課題に直面します。
意思決定者や支援サービスにとって、膨大な複雑なカタログ情報があるため、個人的利益と適切なプログラムとを一致させることは非常に困難であることが多い。
本稿では,プログラムの内容と個人の嗜好の両方に基づいて,学生に効果的なレコメンデーションを提供する最初の情報システムを提案する。
BERTopicは、テキスト埋め込み技術を利用してトピック表現を生成する強力なトピックモデリングアルゴリズムである。
機関で教えられている知識の全体を表現するため、すべてのコース記述から関心トピックを抽出することができる。
学生の個々のトピックの選択に支えられ、最も関連性の高いプログラムのショートリストは、知識マップにおける統計的バックトラックによって計算される。
このアプローチは、職業訓練や職業訓練など、幅広い教育環境に適用することができる。
80のプログラムと5000以上のコースを持つ中等学校におけるケーススタディは、システムが即時かつ効果的な意思決定支援を提供することを示している。
提示された関心トピックは有意義であり,65名の学生を対象とした質的研究により,セレンディピティー,パーソナライゼーション,公正感などの肯定的な効果が示された。
ユーザの98%以上が、リコメンデーションが彼らの関心に沿うことを示しており、約94%が将来このツールを使うだろうと答えている。
定量的分析によると、システムは公平性を確保するために設定でき、パーソナライズスコア0.77を維持しながら、98%のプログラムカバレッジを達成できる。
これらの結果は、このリアルタイムでユーザ中心のデータ駆動システムは、プログラムの選択プロセスを改善する可能性があることを示唆している。
関連論文リスト
- Revolutionizing Undergraduate Learning: CourseGPT and Its Generative AI Advancements [1.949927790632678]
本稿では,教員支援と学部生の教育経験向上を目的とした生成型AIツールであるCourseGPTを紹介する。
Mistral AIのオープンソースのLarge Language Models(LLM)をベースに構築されたCourseGPTは、継続的なインストラクターサポートとコース教材の定期的な更新を提供する。
本稿では,CPR E 431- Basics of Information System Security をパイロットとして利用したCourseGPTの応用例を示す。
論文 参考訳(メタデータ) (2024-07-25T18:02:16Z) - A Benchmark for Fairness-Aware Graph Learning [58.515305543487386]
本稿では,10の代表的な公正性を考慮したグラフ学習手法に関する広範なベンチマークを示す。
我々の詳細な分析は、既存の手法の強みと限界に関する重要な洞察を明らかにしている。
論文 参考訳(メタデータ) (2024-07-16T18:43:43Z) - "It answers questions that I didn't know I had": Ph.D. Students' Evaluation of an Information Sharing Knowledge Graph [0.0]
学際的なPhDプログラムは、学生が必要とする重要な情報が容易に入手できないため、困難である。
複数の情報源から抽出した臨界カテゴリとその関係情報を含む知識グラフを提案する。
本研究では,情報交換と意思決定を容易にするための参加型知識グラフのユーザビリティを評価する。
論文 参考訳(メタデータ) (2024-06-11T21:25:14Z) - Helping university students to choose elective courses by using a hybrid
multi-criteria recommendation system with genetic optimization [0.0]
本稿では、協調フィルタリング(CF)とコンテンツベースフィルタリング(CBF)を組み合わせたハイブリッドRSを提案する。
遺伝的アルゴリズム(GA)は最適なRS構成を自動的に発見するために開発された。
実験結果から, コース推薦における最も関連性の高い基準について検討した。
論文 参考訳(メタデータ) (2024-02-13T11:02:12Z) - Identifying Student Profiles Within Online Judge Systems Using
Explainable Artificial Intelligence [6.638206014723678]
オンライン審査員(OJ)システムは通常、学生によって開発されたコードの高速かつ客観的な評価を得られるため、プログラミング関連のコースの中で考慮される。
本研究の目的は,OJが収集した情報のさらなる活用を考慮し,学生とインストラクターの両方のフィードバックを自動的に推測することで,この制限に対処することである。
論文 参考訳(メタデータ) (2024-01-29T12:11:30Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
ウェブサイトやゲームのようなインタラクティブなソフトウェアを開発することは、特にコンピュータ科学を学ぶための魅力的な方法である。
標準的アプローチでは、インストラクターは、学生が実装した対話型プログラムを手動で評価する必要がある。
Code.orgのような何百万ものオンラインプラットフォームは、インタラクティブなプログラムを実装するための代入に関するフィードバックを提供することができない。
論文 参考訳(メタデータ) (2022-11-16T10:00:23Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Broader terms curriculum mapping: Using natural language processing and
visual-supported communication to create representative program planning
experiences [62.997667081978825]
学部と非学部間のコミュニケーションの困難さは、未発見のコラボレーションの可能性を秘めている。
本稿では,プログラム計画表現の普遍的,自己説明的,権限付与的な提供方法を提案する。
論文 参考訳(メタデータ) (2021-02-09T13:27:04Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - UniNet: Next Term Course Recommendation using Deep Learning [0.0]
本稿では,コースの時系列順が成功の確率にどのように影響するかを表現するための深層学習手法を提案する。
成績情報のみを用いて,AUC測定値の81.10%の性能が得られることを示した。
これは、異なる学生のGPAレベルとコースの難易度で有意義であることが示されている。
論文 参考訳(メタデータ) (2020-09-20T00:07:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。