論文の概要: MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation
- arxiv url: http://arxiv.org/abs/2310.03302v2
- Date: Sun, 14 Apr 2024 21:02:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 23:37:19.064095
- Title: MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation
- Title(参考訳): MLAgentBench: 機械学習実験における言語エージェントの評価
- Authors: Qian Huang, Jian Vora, Percy Liang, Jure Leskovec,
- Abstract要約: 我々は,CIFAR-10におけるモデル性能の改善から,BabyLMのような最近の研究課題まで,13のタスクからなるMLAgentBenchを紹介した。
各タスクに対して、エージェントはファイルの読み書き、コードの実行、出力の検査などのアクションを実行することができる。
我々は、Claude v1.0、Claude v2.1、Claude v3 Opus、GPT-4、GPT-4-turbo、Gemini-Pro、Mixtralに基づいてベンチマークエージェントをベンチマークし、Claude v3 Opusエージェントが成功率の点で最高であることを示す。
- 参考スコア(独自算出の注目度): 96.71370747681078
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central aspect of machine learning research is experimentation, the process of designing and running experiments, analyzing the results, and iterating towards some positive outcome (e.g., improving accuracy). Could agents driven by powerful language models perform machine learning experimentation effectively? To answer this question, we introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM. For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs. We then construct an agent that can perform ML experimentation based on ReAct framework. We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate. It can build compelling ML models over many tasks in MLAgentBench with 37.5% average success rate. Our agents also display highly interpretable plans and actions. However, the success rates vary considerably; they span from 100% on well-established older datasets to as low as 0% on recent Kaggle challenges created potentially after the underlying LM was trained. Finally, we identify several key challenges for LM-based agents such as long-term planning and reducing hallucination. Our code is released at https://github.com/snap-stanford/MLAgentBench.
- Abstract(参考訳): 機械学習研究の中心的な側面は、実験、実験の設計と実行、結果の分析、いくつかのポジティブな結果(例えば、精度の向上)への反復である。
強力な言語モデルによって駆動されるエージェントは、機械学習の実験を効果的に実行するだろうか?
そこで本研究では,CIFAR-10におけるモデル性能の改善から,BabyLMのような最近の研究課題に至るまで,13のタスクからなるMLAgentBenchを紹介する。
各タスクに対して、エージェントはファイルの読み書き、コードの実行、出力の検査などのアクションを実行することができる。
次に、ReActフレームワークに基づいたML実験を行うエージェントを構築する。
我々は、Claude v1.0、Claude v2.1、Claude v3 Opus、GPT-4、GPT-4-turbo、Gemini-Pro、Mixtralに基づいてベンチマークエージェントをベンチマークし、Claude v3 Opusエージェントが成功率の点で最高であることを示す。
MLAgentBenchでは、37.5%の成功率で、多くのタスクで魅力的なMLモデルを構築することができる。
私たちのエージェントは、非常に解釈可能な計画と行動も示しています。
しかし、成功率は大きく異なり、確立された古いデータセットでは100%から、基盤となるLMがトレーニングされた後に生み出された最近のKaggleの課題では0%にまで達する。
最後に, 長期計画や幻覚の低減など, LMベースのエージェントにとって重要な課題をいくつか挙げる。
私たちのコードはhttps://github.com/snap-stanford/MLAgentBench.comでリリースされています。
関連論文リスト
- Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - Automating Code Adaptation for MLOps -- A Benchmarking Study on LLMs [0.0]
各種MLOps機能の自動達成におけるOpenAI(gpt-3.5-turbo)とWizardCoder(オープンソース,15Bパラメータ)モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-05-10T22:18:43Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
ツール学習は、外部ツールを使用してユーティリティを拡張するエージェントとして、大きな言語モデル(LLM)を促進する。
ツール選択,ツール実行,アクションキャリブレーションの3つの特別なエージェントを個別にコーディネートする,協調型対話型エージェントフレームワークであるConAgentsを提案する。
3つのデータセットに対する実験により、LLMは、ConAgentsを装備した場合、大幅に改善されたベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-05T15:08:16Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - Operationalizing Machine Learning: An Interview Study [13.300075655862573]
私たちは18人の機械学習エンジニア(MLE)と半構造化インタビューを行い、多くのアプリケーションで作業しています。
私たちのインタビューでは、運用MLデプロイメントの成功を管理する変数として、Velocity、Validation、Versioningの3つを公開しています。
ML実験の成功、デプロイメント、運用パフォーマンスの維持に関する一般的なプラクティスを要約します。
論文 参考訳(メタデータ) (2022-09-16T16:59:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。