MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2501.06713v3
- Date: Sun, 26 Jan 2025 08:17:35 GMT
- Title: MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation
- Authors: Tianyu Fan, Jingyuan Wang, Xubin Ren, Chao Huang,
- Abstract summary: MiniRAG is a novel Retrieval-Augmented Generation (RAG) system designed for extreme simplicity and efficiency.<n>MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities.
- Score: 22.512017529583332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing demand for efficient and lightweight Retrieval-Augmented Generation (RAG) systems has highlighted significant challenges when deploying Small Language Models (SLMs) in existing RAG frameworks. Current approaches face severe performance degradation due to SLMs' limited semantic understanding and text processing capabilities, creating barriers for widespread adoption in resource-constrained scenarios. To address these fundamental limitations, we present MiniRAG, a novel RAG system designed for extreme simplicity and efficiency. MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities. Our extensive experiments demonstrate that MiniRAG achieves comparable performance to LLM-based methods even when using SLMs while requiring only 25\% of the storage space. Additionally, we contribute a comprehensive benchmark dataset for evaluating lightweight RAG systems under realistic on-device scenarios with complex queries. We fully open-source our implementation and datasets at: https://github.com/HKUDS/MiniRAG.
Related papers
- Simplifying Data Integration: SLM-Driven Systems for Unified Semantic Queries Across Heterogeneous Databases [0.0]
This paper presents a Small Language Model(SLM)-driven system that synergizes advancements in lightweight Retrieval-Augmented Generation (RAG) and semantic-aware data structuring.
By integrating MiniRAG's semantic-aware heterogeneous graph indexing and topology-enhanced retrieval with SLM-powered structured data extraction, our system addresses the limitations of traditional methods.
Experimental results demonstrate superior performance in accuracy and efficiency, while the introduction of semantic entropy as an unsupervised evaluation metric provides robust insights into model uncertainty.
arXiv Detail & Related papers (2025-04-08T03:28:03Z) - Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding [0.0]
We present a framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning.
Our framework integrates two complementary techniques: Policy-d RetrievalAugmented Generation (PORAG) and Adaptive Token-Layer Attention Scoring (ATLAS)
Our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems.
arXiv Detail & Related papers (2025-04-02T01:16:10Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.
RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.
Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - Pseudo-Knowledge Graph: Meta-Path Guided Retrieval and In-Graph Text for RAG-Equipped LLM [8.941718961724984]
Pseudo-Knowledge Graph (PKG) framework integrates Meta-path Retrieval, In-graph Text and Vector Retrieval into Large Language Models.
PKG offers a richer knowledge representation and improves accuracy in information retrieval.
arXiv Detail & Related papers (2025-03-01T02:39:37Z) - New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) is a cross-modal task that evaluates the interplay of language understanding, image comprehension, and language-to-image grounding.
We introduce a new REC dataset with two key features. First, it is designed with controllable difficulty levels, requiring fine-grained reasoning across object categories, attributes, and relationships.
Second, it incorporates negative text and images generated through fine-grained editing, explicitly testing a model's ability to reject non-existent targets.
arXiv Detail & Related papers (2025-02-27T13:58:44Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
multimodal Retrieval-Augmented Generation (mRAG) is naturally introduced to provide MLLMs with comprehensive and up-to-date knowledge.
We propose a novel framework called textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) which achieves adaptive retrieval and useful information localization.
mR$2$AG significantly outperforms state-of-the-art MLLMs on INFOSEEK and Encyclopedic-VQA
arXiv Detail & Related papers (2024-11-22T16:15:50Z) - Simple is Effective: The Roles of Graphs and Large Language Models in Knowledge-Graph-Based Retrieval-Augmented Generation [9.844598565914055]
Large Language Models (LLMs) demonstrate strong reasoning abilities but face limitations such as hallucinations and outdated knowledge.
We introduce SubgraphRAG, extending the Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) framework that retrieves subgraphs.
Our approach innovatively integrates a lightweight multilayer perceptron with a parallel triple-scoring mechanism for efficient and flexible subgraph retrieval.
arXiv Detail & Related papers (2024-10-28T04:39:32Z) - LightRAG: Simple and Fast Retrieval-Augmented Generation [12.86888202297654]
Retrieval-Augmented Generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge sources.
Existing RAG systems have significant limitations, including reliance on flat data representations and inadequate contextual awareness.
We propose LightRAG, which incorporates graph structures into text indexing and retrieval processes.
arXiv Detail & Related papers (2024-10-08T08:00:12Z) - Embodied-RAG: General Non-parametric Embodied Memory for Retrieval and Generation [65.23793829741014]
Embodied-RAG is a framework that enhances the model of an embodied agent with a non-parametric memory system.
At its core, Embodied-RAG's memory is structured as a semantic forest, storing language descriptions at varying levels of detail.
We demonstrate that Embodied-RAG effectively bridges RAG to the robotics domain, successfully handling over 200 explanation and navigation queries.
arXiv Detail & Related papers (2024-09-26T21:44:11Z) - SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery [24.38640001674072]
Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases.
Existing RAG systems are primarily effective for straightforward question-answering tasks.
We propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory.
arXiv Detail & Related papers (2024-09-09T13:20:31Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.