論文の概要: KeTS: Kernel-based Trust Segmentation against Model Poisoning Attacks
- arxiv url: http://arxiv.org/abs/2501.06729v2
- Date: Sun, 29 Jun 2025 07:32:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-01 15:08:38.84805
- Title: KeTS: Kernel-based Trust Segmentation against Model Poisoning Attacks
- Title(参考訳): KeTS: モデル攻撃に対するカーネルベースのトラストセグメンテーション
- Authors: Ankit Gangwal, Mauro Conti, Tommaso Pauselli,
- Abstract要約: フェデレートラーニング(FL)は、ユーザが個人データを公開せずに、グローバルモデルを分散的にトレーニングすることを可能にする。
FLは、悪意のあるアクターが世界のモデルの精度を損なうためにアップデートを作成した、モデル中毒攻撃に対して脆弱なままである。
本稿では,新たな防御機構であるKernel-based Trust(KeTS)を提案する。
- 参考スコア(独自算出の注目度): 17.69993201359518
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables multiple users to collaboratively train a global model in a distributed manner without revealing their personal data. However, FL remains vulnerable to model poisoning attacks, where malicious actors inject crafted updates to compromise the global model's accuracy. We propose a novel defense mechanism, Kernel-based Trust Segmentation (KeTS), to counter model poisoning attacks. Unlike existing approaches, KeTS analyzes the evolution of each client's updates and effectively segments malicious clients using Kernel Density Estimation (KDE), even in the presence of benign outliers. We thoroughly evaluate KeTS's performance against the six most effective model poisoning attacks (i.e., Trim-Attack, Krum-Attack, Min-Max attack, Min-Sum attack, and their variants) on four different datasets (i.e., MNIST, Fashion-MNIST, CIFAR-10, and KDD-CUP-1999) and compare its performance with three classical robust schemes (i.e., Krum, Trim-Mean, and Median) and a state-of-the-art defense (i.e., FLTrust). Our results show that KeTS outperforms the existing defenses in every attack setting; beating the best-performing defense by an overall average of >24% (on MNIST), >14% (on Fashion-MNIST), >9% (on CIFAR-10), >11% (on KDD-CUP-1999). A series of further experiments (varying poisoning approaches, attacker population, etc.) reveal the consistent and superior performance of KeTS under diverse conditions. KeTS is a practical solution as it satisfies all three defense objectives (i.e., fidelity, robustness, and efficiency) without imposing additional overhead on the clients. Finally, we also discuss a simple, yet effective extension to KeTS to handle consistent-untargeted (e.g., sign-flipping) attacks as well as targeted attacks (e.g., label-flipping).
- Abstract(参考訳): フェデレートラーニング(FL)は、複数のユーザが個人データを公開せずに、グローバルモデルを分散的にトレーニングすることを可能にする。
しかし、FLは、悪意のあるアクターが世界モデルの精度を損なうために手作りの更新を注入する、モデル中毒攻撃に対して脆弱なままである。
本稿では,新たな防御機構であるKernel-based Trust Segmentation (KeTS)を提案する。
既存のアプローチとは異なり、KeTSは各クライアントのアップデートの進化を分析し、良質な外れ値が存在する場合でも、Kernel Density Estimation (KDE)を使用して、悪意のあるクライアントを効果的にセグメント化する。
我々は,4つの異なるデータセット(MNIST, Fashion-MNIST, CIFAR-10, KDD-CUP-1999)上で,KeTSの6つの最も効果的なモデル中毒攻撃(トリム・アタック, クルム・アタック, ミン・マックス攻撃, ミン・サム攻撃, ミニ・サム攻撃, およびそれらの変種)に対して,KeTSの性能を3つの古典的ロバストスキーム(クルム, トリム・ミーン, メディアン)および最先端防御(FLTrust)と比較した。
以上の結果から,KeTSは各攻撃環境における既存の防御よりも優れており,MNISTでは24%,Fashion-MNISTでは14%,CIFAR-10では9%,KDD-CUP-1999では11%であった。
一連の実験(様々な毒殺アプローチ、攻撃者集団など)により、様々な条件下でのKeTSの一貫性と優れた性能が明らかにされた。
KeTSは、3つの防御目標(すなわち、忠実さ、堅牢性、効率性)をすべて満足し、クライアントにさらなるオーバーヘッドを課すことなく、実用的なソリューションである。
最後に、KeTSのシンプルで効果的な拡張について論じ、一貫性のない(例えば、署名フリッピング)攻撃とターゲットアタック(例えば、ラベルフリッピング)を扱う。
関連論文リスト
- Not All Edges are Equally Robust: Evaluating the Robustness of Ranking-Based Federated Learning [49.68790647579509]
Federated Ranking Learning (FRL) は最先端のFLフレームワークであり、通信効率と中毒攻撃に対するレジリエンスで際立っている。
Vulnerable Edge Manipulation (VEM) 攻撃という, FRLに対する新たな局所モデル中毒攻撃を導入する。
我々の攻撃は、全体的な53.23%の攻撃効果を達成し、既存の方法よりも3.7倍のインパクトを与える。
論文 参考訳(メタデータ) (2025-03-12T00:38:14Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning(FL)は、分散機械学習ダイアグラムで、複数のクライアントがプライベートなローカルデータを共有せずに、グローバルモデルを協調的にトレーニングすることができる。
FLシステムは、データ中毒やモデル中毒を通じて悪意のあるクライアントで起こっている攻撃に対して脆弱である。
既存の防御方法は通常、特定の種類の中毒を緩和することに焦点を当てており、しばしば目に見えないタイプの攻撃に対して効果がない。
論文 参考訳(メタデータ) (2024-08-05T20:27:45Z) - Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning [4.907460152017894]
フェデレートラーニング(Federated Learning, FL)は、参加者が共有機械学習モデルを集合的にトレーニングすることを可能にする、協調学習パラダイムである。
データ中毒攻撃に対する現在のFL防衛戦略は、正確性と堅牢性の間のトレードオフを含む。
本稿では、FLにおけるデータ中毒攻撃を効果的に対処するために、ゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
論文 参考訳(メタデータ) (2024-04-05T14:37:49Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FedCC: Robust Federated Learning against Model Poisoning Attacks [0.0]
フェデレートラーニング(Federated Learning)は、学習モデルにおけるプライバシの問題に対処するように設計されている。
新しい分散パラダイムは、データのプライバシを保護するが、サーバがローカルデータセットにアクセスできないため、攻撃面を区別する。
論文 参考訳(メタデータ) (2022-12-05T01:52:32Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
フェデレートラーニング(FL)は、グローバル機械学習モデルを、参加する労働者のセット間で分散されたローカルデータから学習することを可能にする。
FLは、学習モデルの完全性に悪影響を及ぼす標的の毒殺攻撃に対して脆弱である。
FL標的攻撃に対抗する手段として,textitFL-Defenderを提案する。
論文 参考訳(メタデータ) (2022-07-02T16:04:46Z) - FL-WBC: Enhancing Robustness against Model Poisoning Attacks in
Federated Learning from a Client Perspective [35.10520095377653]
Federated Learning(FL)は,中央サーバとエッジデバイス間の反復的な通信を通じてグローバルモデルをトレーニングする,人気のある分散学習フレームワークである。
近年の研究では、FLはモデル中毒攻撃に弱いことが示されている。
我々は、モデル中毒攻撃を軽減できるクライアントベースの防御システム、White Blood Cell for Federated Learning (FL-WBC)を提案する。
論文 参考訳(メタデータ) (2021-10-26T17:13:35Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。