論文の概要: UR2P-Dehaze: Learning a Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior
- arxiv url: http://arxiv.org/abs/2501.06818v1
- Date: Sun, 12 Jan 2025 14:21:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:24:30.127629
- Title: UR2P-Dehaze: Learning a Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior
- Title(参考訳): UR2P-Dehaze: 未経験リッチ物理プライオリティによる単純なデハズエンハンサーの学習
- Authors: Minglong Xue, Shuaibin Fan, Shivakumara Palaiahnakote, Mingliang Zhou,
- Abstract要約: 我々は、Unpaired Rich Physical Prior (UR2P-Dehaze)を介してSimple Image Dehaze Enhancerと呼ばれる未ペア画像デハズネットワークを提案する。
まず, 画像の照度, 反射率, 色情報を正確に推定するために, 照度と反射率の整合性を確保するために, 反復的に訓練された事前推定器(SPE)を設計する。
次に、低周波と高周波の両方で重要な特徴を効果的に統合する動的ウェーブレット分離畳み込み(DWSC)を提案する。
- 参考スコア(独自算出の注目度): 8.713784455593778
- License:
- Abstract: Image dehazing techniques aim to enhance contrast and restore details, which are essential for preserving visual information and improving image processing accuracy. Existing methods rely on a single manual prior, which cannot effectively reveal image details. To overcome this limitation, we propose an unpaired image dehazing network, called the Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior (UR2P-Dehaze). First, to accurately estimate the illumination, reflectance, and color information of the hazy image, we design a shared prior estimator (SPE) that is iteratively trained to ensure the consistency of illumination and reflectance, generating clear, high-quality images. Additionally, a self-monitoring mechanism is introduced to eliminate undesirable features, providing reliable priors for image reconstruction. Next, we propose Dynamic Wavelet Separable Convolution (DWSC), which effectively integrates key features across both low and high frequencies, significantly enhancing the preservation of image details and ensuring global consistency. Finally, to effectively restore the color information of the image, we propose an Adaptive Color Corrector that addresses the problem of unclear colors. The PSNR, SSIM, LPIPS, FID and CIEDE2000 metrics on the benchmark dataset show that our method achieves state-of-the-art performance. It also contributes to the performance improvement of downstream tasks. The project code will be available at https://github.com/Fan-pixel/UR2P-Dehaze. \end{abstract}
- Abstract(参考訳): 画像復調技術は,視覚情報の保存と画像処理精度の向上に不可欠なコントラストの強化と詳細の復元を目的としている。
既存の手法は、画像の詳細を効果的に明らかにできない、単一の手作業による事前処理に依存している。
この制限を克服するために,Unpaired Rich Physical Prior (UR2P-Dehaze) を用いたSimple Image Dehaze Enhancer と呼ばれる未ペア画像デハズネットワークを提案する。
まず, 画像の照度, 反射率, 色情報を正確に推定するために, 照度と反射率の整合性を確保し, 鮮明で高品質な画像を生成するように反復的に訓練された事前推定器(SPE)を設計する。
さらに、望ましくない特徴を排除するために自己監視機構を導入し、画像再構成のための信頼性の高い事前情報を提供する。
次に、低周波と高周波の両方で重要な特徴を効果的に統合し、画像の保存を著しく向上し、大域的な一貫性を確保する動的ウェーブレット分離畳み込み(DWSC)を提案する。
最後に、画像の色情報を効果的に復元するために、不明瞭な色の問題に対処する適応色補正器を提案する。
ベンチマークデータセット上のPSNR, SSIM, LPIPS, FID, CIEDE2000 の指標から, 提案手法が最先端性能を実現することを示す。
また、ダウンストリームタスクのパフォーマンス改善にも貢献する。
プロジェクトのコードはhttps://github.com/Fan-pixel/UR2P-Dehaze.comで公開される。
\end{abstract}
関連論文リスト
- UniRestore: Unified Perceptual and Task-Oriented Image Restoration Model Using Diffusion Prior [56.35236964617809]
画像復元は、悪天候、ぼやけ、騒音などの様々な要因によって劣化した入力からコンテンツを回復することを目的としている。
本稿では,PIRとTIRのギャップを埋める統一画像復元モデルUniRestoreを紹介する。
本稿では,分解エンコーダの特徴を再構築するための補足的特徴回復モジュール (CFRM) と,デコーダの適応的特徴融合を容易にするタスク特徴適応モジュール (TFA) を提案する。
論文 参考訳(メタデータ) (2025-01-22T08:06:48Z) - WTCL-Dehaze: Rethinking Real-world Image Dehazing via Wavelet Transform and Contrastive Learning [17.129068060454255]
自律運転や監視といったアプリケーションには、単一イメージのデハジングが不可欠だ。
コントラスト損失と離散ウェーブレット変換を統合した半教師付きデハージングネットワークを提案する。
提案アルゴリズムは,最先端の単一画像復調法と比較して,優れた性能とロバスト性を実現している。
論文 参考訳(メタデータ) (2024-10-07T05:36:11Z) - FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder [49.79611204954311]
水中画像は、低明度、色の変化、ぼやけた詳細、吸光光によるノイズ、水や懸濁粒子による散乱などの様々な問題に悩まされることが多い。
従来の水中画像強調法(UIE)は主に空間領域の強調に焦点を当てており、画像固有の周波数領域情報を無視している。
論文 参考訳(メタデータ) (2024-04-27T15:16:34Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior [70.46245698746874]
DiffBIRは、視覚の異なる画像復元タスクを処理できる一般的な修復パイプラインである。
DiffBIRは, ブラインド画像復元問題を, 1) 劣化除去: 画像に依存しない内容の除去; 2) 情報再生: 失われた画像内容の生成の2段階に分離する。
第1段階では, 修復モジュールを用いて劣化を除去し, 高忠実度復元結果を得る。
第2段階では、潜伏拡散モデルの生成能力を活用して現実的な詳細を生成するIRControlNetを提案する。
論文 参考訳(メタデータ) (2023-08-29T07:11:52Z) - Division Gets Better: Learning Brightness-Aware and Detail-Sensitive
Representations for Low-Light Image Enhancement [10.899693396348171]
LCDBNetは、輝度調整ネットワーク(LAN)と色復元ネットワーク(CRN)の2つのブランチで構成されている。
LANは、長距離依存と局所的な注意相関を利用した輝度認識機能を学ぶ責任を負う。
CRNはマルチレベルウェーブレット分解によるディテールセンシティブな特徴の学習に重点を置いている。
最後に、融合ネットワークは、学習した特徴をブレンドして視覚的に印象的な画像を生成するように設計されている。
論文 参考訳(メタデータ) (2023-07-18T09:52:48Z) - SelfPromer: Self-Prompt Dehazing Transformers with Depth-Consistency [51.92434113232977]
本研究は,画像デハージングに有効な深度整合型セルフプロンプトトランスを提案する。
ヘイズ残像とその明確な像の深さが異なるという観測によって動機づけられた。
VQGANに基づくエンコーダ・デコーダネットワークにプロンプト、プロンプト埋め込み、そしてインタプリタを組み込むことにより、より優れた知覚品質を実現することができる。
論文 参考訳(メタデータ) (2023-03-13T11:47:24Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
2段階の工程で細部と色を精錬しながら、内在的な劣化と低照度画像を照らし出す。
カラー画像の定式化に触発されて,まず低照度入力からの劣化を推定し,環境照明色の歪みをシミュレーションし,そのコンテンツを精錬して拡散照明色の損失を回復した。
LOL1000データセットではPSNRで0.95dB、ExDarkデータセットでは3.18%のmAPでSOTAを上回った。
論文 参考訳(メタデータ) (2021-03-19T04:00:27Z) - Essential Features: Reducing the Attack Surface of Adversarial
Perturbations with Robust Content-Aware Image Preprocessing [5.831840281853604]
画像に摂動を加えることで、機械学習モデルを騙して誤った予測をすることができる。
このような摂動に対する防御の1つのアプローチは、摂動の影響を取り除くために画像前処理関数を適用することである。
本稿では,イメージをロバストな特徴空間に変換する,Essential Featuresと呼ばれる新しい画像前処理手法を提案する。
論文 参考訳(メタデータ) (2020-12-03T04:40:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。