A Study on Educational Data Analysis and Personalized Feedback Report Generation Based on Tags and ChatGPT
- URL: http://arxiv.org/abs/2501.06819v1
- Date: Sun, 12 Jan 2025 14:23:17 GMT
- Title: A Study on Educational Data Analysis and Personalized Feedback Report Generation Based on Tags and ChatGPT
- Authors: Yizhou Zhou, Mengqiao Zhang, Yuan-Hao Jiang, Xinyu Gao, Naijie Liu, Bo Jiang,
- Abstract summary: This study introduces a novel method that employs tag annotation and the ChatGPT language model to analyze student learning behaviors.
By transforming raw educational data into interpretable tags, this method supports the provision of efficient and timely personalized learning feedback.
- Score: 9.269064231481591
- License:
- Abstract: This study introduces a novel method that employs tag annotation coupled with the ChatGPT language model to analyze student learning behaviors and generate personalized feedback. Central to this approach is the conversion of complex student data into an extensive set of tags, which are then decoded through tailored prompts to deliver constructive feedback that encourages rather than discourages students. This methodology focuses on accurately feeding student data into large language models and crafting prompts that enhance the constructive nature of feedback. The effectiveness of this approach was validated through surveys conducted with over 20 mathematics teachers, who confirmed the reliability of the generated reports. This method can be seamlessly integrated into intelligent adaptive learning systems or provided as a tool to significantly reduce the workload of teachers, providing accurate and timely feedback to students. By transforming raw educational data into interpretable tags, this method supports the provision of efficient and timely personalized learning feedback that offers constructive suggestions tailored to individual learner needs.
Related papers
- Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics [0.0]
This paper assesses the impact of new pedagogical incentives implemented in a first-year undergraduate computing module at University College London.
We employ a mixed methods approach, combining learning analytics with qualitative data to evaluate the effectiveness of these incentives on increasing student engagement.
Our paper introduces an interpretable and actionable model for student engagement, which integrates objective, data-driven analysis with students' perspectives.
arXiv Detail & Related papers (2024-03-13T16:39:38Z) - YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
This paper introduces YODA, a teacher-student progressive learning framework.
It emulates the teacher-student education process to improve the efficacy of model fine-tuning.
Experiments show that training LLaMA2 with data from YODA improves SFT with significant performance gain.
arXiv Detail & Related papers (2024-01-28T14:32:15Z) - RELIC: Investigating Large Language Model Responses using Self-Consistency [58.63436505595177]
Large Language Models (LLMs) are notorious for blending fact with fiction and generating non-factual content, known as hallucinations.
We propose an interactive system that helps users gain insight into the reliability of the generated text.
arXiv Detail & Related papers (2023-11-28T14:55:52Z) - Using Large Language Models to Provide Explanatory Feedback to Human
Tutors [3.2507682694499582]
We present two approaches for supplying tutors real-time feedback within an online lesson on how to give students effective praise.
This work-in-progress demonstrates considerable accuracy in binary classification for corrective feedback of effective, or effort-based.
More notably, we introduce progress towards an enhanced approach of providing explanatory feedback using large language model-facilitated named entity recognition.
arXiv Detail & Related papers (2023-06-27T14:19:12Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - A Semi-Supervised Learning Approach with Two Teachers to Improve
Breakdown Identification in Dialogues [25.499578161686355]
We propose a novel semi-supervised teacher-student learning framework to tackle this task.
We introduce two teachers which are trained on labeled data and perturbed labeled data respectively.
We leverage unlabeled data to improve classification in student training where we employ two teachers to refine the labeling of unlabeled data.
arXiv Detail & Related papers (2022-02-22T14:39:51Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
In past years, researchers propose to utilize the teacher-student framework in their methods to decrease the domain gap between different person re-identification datasets.
Inspired by recent teacher-student framework based methods, we propose to conduct further exploration to imitate the human learning process from different aspects.
arXiv Detail & Related papers (2021-11-28T01:14:29Z) - Demonstrating REACT: a Real-time Educational AI-powered Classroom Tool [0.9899017174990579]
We present a new Real-time Educational AI-powered Classroom Tool that employs EDM techniques for supporting the decision-making process of educators.
ReACT is a data-driven tool with a user-friendly graphical interface.
It analyzes students' performance data and provides context-based alerts as well as recommendations to educators for course planning.
arXiv Detail & Related papers (2021-07-30T03:09:59Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.