Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics
- URL: http://arxiv.org/abs/2403.14686v1
- Date: Wed, 13 Mar 2024 16:39:38 GMT
- Title: Evaluating Pedagogical Incentives in Undergraduate Computing: A Mixed Methods Approach Using Learning Analytics
- Authors: Laura J. Johnston, Takoua Jendoubi,
- Abstract summary: This paper assesses the impact of new pedagogical incentives implemented in a first-year undergraduate computing module at University College London.
We employ a mixed methods approach, combining learning analytics with qualitative data to evaluate the effectiveness of these incentives on increasing student engagement.
Our paper introduces an interpretable and actionable model for student engagement, which integrates objective, data-driven analysis with students' perspectives.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of higher education's evolving dynamics post-COVID-19, this paper assesses the impact of new pedagogical incentives implemented in a first-year undergraduate computing module at University College London. We employ a mixed methods approach, combining learning analytics with qualitative data, to evaluate the effectiveness of these incentives on increasing student engagement. A longitudinal overview of resource interactions is mapped through Bayesian network analysis of Moodle activity logs from 204 students. This analysis identifies early resource engagement as a predictive indicator of continued engagement while also suggesting that the new incentives disproportionately benefit highly engaged students. Focus group discussions complement this analysis, providing insights into student perceptions of the pedagogical changes and the module design. These qualitative findings underscore the challenge of sustaining engagement through the new incentives and highlight the importance of communication in blended learning environments. Our paper introduces an interpretable and actionable model for student engagement, which integrates objective, data-driven analysis with students' perspectives. This model provides educators with a tool to evaluate and improve instructional strategies. By demonstrating the effectiveness of our mixed methods approach in capturing the intricacies of student behaviour in digital learning environments, we underscore the model's potential to improve online pedagogical practices across diverse educational settings.
Related papers
- A General Model for Detecting Learner Engagement: Implementation and Evaluation [0.0]
This paper proposes a general, lightweight model for selecting and processing features to detect learners' engagement levels.
We analyzed the videos from the publicly available DAiSEE dataset to capture the dynamic essence of learner engagement.
The suggested model achieves an accuracy of 68.57% in a specific implementation and outperforms the studied state-of-the-art models detecting learners' engagement levels.
arXiv Detail & Related papers (2024-05-07T12:11:15Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
We use Language Models (LMs) as educational experts to assess the impact of various instructions on learning outcomes.
We introduce an instruction optimization approach in which one LM generates instructional materials using the judgments of another LM as a reward function.
Human teachers' evaluations of these LM-generated worksheets show a significant alignment between the LM judgments and human teacher preferences.
arXiv Detail & Related papers (2024-03-05T09:09:15Z) - Harnessing Transparent Learning Analytics for Individualized Support
through Auto-detection of Engagement in Face-to-Face Collaborative Learning [3.0184625301151833]
This paper proposes a transparent approach to automatically detect student's individual engagement in the process of collaboration.
The proposed approach can reflect student's individual engagement and can be used as an indicator to distinguish students with different collaborative learning challenges.
arXiv Detail & Related papers (2024-01-03T12:20:28Z) - Revealing Networks: Understanding Effective Teacher Practices in
AI-Supported Classrooms using Transmodal Ordered Network Analysis [0.9187505256430948]
The present study uses transmodal ordered network analysis to understand effective teacher practices in relationship to traditional metrics of in-system learning in a mathematics classroom working with AI tutors.
Comparing teacher practices by student learning rates, we find that students with low learning rates exhibited more hint use after monitoring.
Students with low learning rates showed learning behavior similar to their high learning rate peers, achieving repeated correct attempts in the tutor.
arXiv Detail & Related papers (2023-12-17T21:50:02Z) - EIT: Earnest Insight Toolkit for Evaluating Students' Earnestness in
Interactive Lecture Participation Exercises [2.6794462297854627]
Earnest Insight Toolkit (EIT) is a tool designed to assess students' engagement within interactive lecture participation exercises.
Our objective is to equip educators with valuable means of identifying at-risk students for enhancing intervention and support strategies.
arXiv Detail & Related papers (2023-10-31T07:05:00Z) - A Hierarchy-based Analysis Approach for Blended Learning: A Case Study
with Chinese Students [12.533646830917213]
This paper proposes a hierarchy-based evaluation approach for blended learning evaluation.
The results show that cognitive engagement and emotional engagement play a more important role in blended learning evaluation.
arXiv Detail & Related papers (2023-09-19T00:09:00Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
In past years, researchers propose to utilize the teacher-student framework in their methods to decrease the domain gap between different person re-identification datasets.
Inspired by recent teacher-student framework based methods, we propose to conduct further exploration to imitate the human learning process from different aspects.
arXiv Detail & Related papers (2021-11-28T01:14:29Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
We propose a novel approach using Graph Neural Networks (GNNs) to achieve better student performance prediction in interactive online question pools.
Specifically, we model the relationship between students and questions using student interactions to construct the student-interaction-question network.
We evaluate the effectiveness of our approach on a real-world dataset consisting of 104,113 mouse trajectories generated in the problem-solving process of over 4000 students on 1631 questions.
arXiv Detail & Related papers (2020-08-04T14:55:32Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.