論文の概要: An efficient approach to represent enterprise web application structure using Large Language Model in the service of Intelligent Quality Engineering
- arxiv url: http://arxiv.org/abs/2501.06837v1
- Date: Sun, 12 Jan 2025 15:10:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:29:26.695236
- Title: An efficient approach to represent enterprise web application structure using Large Language Model in the service of Intelligent Quality Engineering
- Title(参考訳): 知的品質工学のサービスにおける大規模言語モデルを用いたエンタープライズWebアプリケーション構造を表現するための効率的なアプローチ
- Authors: Zaber Al Hassan Ayon, Gulam Husain, Roshankumar Bisoi, Waliur Rahman, Dr Tom Osborn,
- Abstract要約: 本稿では,Large Language Models (LLM) を用いたエンタープライズWebアプリケーション構造を表現する新しい手法を提案する。
LLMの少数ショット学習能力を最適化する階層的表現手法を提案する。
我々の方法論は、自動ソフトウェアテストにおけるジェネレーティブAI技術の使用に関する既存の課題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents a novel approach to represent enterprise web application structures using Large Language Models (LLMs) to enable intelligent quality engineering at scale. We introduce a hierarchical representation methodology that optimizes the few-shot learning capabilities of LLMs while preserving the complex relationships and interactions within web applications. The approach encompasses five key phases: comprehensive DOM analysis, multi-page synthesis, test suite generation, execution, and result analysis. Our methodology addresses existing challenges around usage of Generative AI techniques in automated software testing by developing a structured format that enables LLMs to understand web application architecture through in-context learning. We evaluated our approach using two distinct web applications: an e-commerce platform (Swag Labs) and a healthcare application (MediBox) which is deployed within Atalgo engineering environment. The results demonstrate success rates of 90\% and 70\%, respectively, in achieving automated testing, with high relevance scores for test cases across multiple evaluation criteria. The findings suggest that our representation approach significantly enhances LLMs' ability to generate contextually relevant test cases and provide better quality assurance overall, while reducing the time and effort required for testing.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) を用いた企業Webアプリケーション構造を表現するための新しい手法を提案する。
ウェブアプリケーション内の複雑な関係や相互作用を保ちながら、LLMの少数ショット学習能力を最適化する階層的表現手法を提案する。
アプローチには、包括的なDOM分析、多ページ合成、テストスイートの生成、実行、結果分析の5つの重要なフェーズが含まれている。
提案手法は,LLMがコンテキスト内学習を通じてWebアプリケーションアーキテクチャを理解できるように構造化されたフォーマットを開発することにより,自動ソフトウェアテストにおける生成AI技術の利用に関する既存の課題に対処する。
我々は、Atalgoのエンジニアリング環境にデプロイされるEコマースプラットフォーム(Swag Labs)とヘルスケアアプリケーション(MediBox)の2つの異なるWebアプリケーションを用いて、アプローチを評価した。
その結果, 自動テストの実施における成功率は90 %, 70 %であった。
以上の結果から,我々の表現アプローチはLLMの文脈に関連のあるテストケースの生成能力を大幅に向上させ,全体の品質保証を向上するとともに,テストに要する時間と労力を削減できることが示唆された。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - The BrowserGym Ecosystem for Web Agent Research [151.90034093362343]
BrowserGymエコシステムは、Webエージェントの効率的な評価とベンチマークの必要性の高まりに対処する。
大規模なマルチベンチマークWebエージェント実験を初めて実施する。
結果は、OpenAIとAnthropicの最新モデルの大きな相違点を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-12-06T23:43:59Z) - A Survey of Small Language Models [104.80308007044634]
小言語モデル (SLM) は, 計算資源の最小化による言語タスクの効率化と性能の向上により, ますます重要になってきている。
本稿では,SLMのアーキテクチャ,トレーニング技術,モデル圧縮技術に着目した総合的な調査を行う。
論文 参考訳(メタデータ) (2024-10-25T23:52:28Z) - Automating Pharmacovigilance Evidence Generation: Using Large Language Models to Produce Context-Aware SQL [0.0]
検索拡張世代(RAG)フレームワークでOpenAIのGPT-4モデルを利用する。
ビジネスコンテキストドキュメントはビジネスコンテキストドキュメントでリッチ化され、NLQを構造化クエリ言語クエリに変換する。
複雑性の高いクエリが除外された場合、パフォーマンスは最大85%向上した。
論文 参考訳(メタデータ) (2024-06-15T17:07:31Z) - Automating REST API Postman Test Cases Using LLM [0.0]
本稿では,大規模言語モデルを用いたテストケースの自動生成手法の探索と実装について述べる。
この方法論は、テストケース生成の効率性と有効性を高めるために、Open AIの使用を統合する。
この研究で開発されたモデルは、手作業で収集したポストマンテストケースやさまざまなRest APIのインスタンスを使ってトレーニングされている。
論文 参考訳(メタデータ) (2024-04-16T15:53:41Z) - RITFIS: Robust input testing framework for LLMs-based intelligent
software [6.439196068684973]
RITFISは、自然言語入力に対するインテリジェントソフトウェアの堅牢性を評価するために設計された最初のフレームワークである。
RITFISは17の自動テスト手法を採用しており、元々はディープニューラルネットワーク(DNN)ベースのインテリジェントソフトウェア用に設計された。
LLMベースの知的ソフトウェア評価におけるRITFISの有効性を実証的検証により示す。
論文 参考訳(メタデータ) (2024-02-21T04:00:54Z) - A Case Study on Test Case Construction with Large Language Models:
Unveiling Practical Insights and Challenges [2.7029792239733914]
本稿では,ソフトウェア工学の文脈におけるテストケース構築における大規模言語モデルの適用について検討する。
定性分析と定量分析の混合により, LLMが試験ケースの包括性, 精度, 効率に与える影響を評価する。
論文 参考訳(メタデータ) (2023-12-19T20:59:02Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - Comparative Code Structure Analysis using Deep Learning for Performance
Prediction [18.226950022938954]
本稿では,アプリケーションの静的情報(抽象構文木やASTなど)を用いてコード構造の変化に基づいて性能変化を予測することの実現可能性を評価することを目的とする。
組込み学習手法の評価により,木系長短メモリ(LSTM)モデルでは,ソースコードの階層構造を利用して遅延表現を発見し,最大84%(個人的問題)と73%(複数の問題を含む組み合わせデータセット)の精度で性能変化を予測できることが示された。
論文 参考訳(メタデータ) (2021-02-12T16:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。