What Is a Counterfactual Cause in Action Theories?
- URL: http://arxiv.org/abs/2501.06857v1
- Date: Sun, 12 Jan 2025 16:15:12 GMT
- Title: What Is a Counterfactual Cause in Action Theories?
- Authors: Daxin Liu, Vaishak Belle,
- Abstract summary: We propose a notion of cause based on counterfactual analysis.
We analyze the relationship between our notion of the achievement cause and the achievement cause by Batusov and Soutchanski.
- Score: 7.113185656319572
- License:
- Abstract: Since the proposal by Halpern and Pearl, reasoning about actual causality has gained increasing attention in artificial intelligence, ranging from domains such as model-checking and verification to reasoning about actions and knowledge. More recently, Batusov and Soutchanski proposed a notion of actual achievement cause in the situation calculus, amongst others, they can determine the cause of quantified effects in a given action history. While intuitively appealing, this notion of cause is not defined in a counterfactual perspective. In this paper, we propose a notion of cause based on counterfactual analysis. In the context of action history, we show that our notion of cause generalizes naturally to a notion of achievement cause. We analyze the relationship between our notion of the achievement cause and the achievement cause by Batusov and Soutchanski. Finally, we relate our account of cause to Halpern and Pearl's account of actual causality. Particularly, we note some nuances in applying a counterfactual viewpoint to disjunctive goals, a common thorn to definitions of actual causes.
Related papers
- Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
We investigate the causal reasoning abilities of large language models (LLMs) through the representative problem of inferring causal relationships from narratives.
We find that even state-of-the-art language models rely on unreliable shortcuts, both in terms of the narrative presentation and their parametric knowledge.
arXiv Detail & Related papers (2024-10-31T12:48:58Z) - The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning [70.16523526957162]
Understanding commonsense causality helps people understand the principles of the real world better.
Despite its significance, a systematic exploration of this topic is notably lacking.
Our work aims to provide a systematic overview, update scholars on recent advancements, and provide a pragmatic guide for beginners.
arXiv Detail & Related papers (2024-06-27T16:30:50Z) - CELLO: Causal Evaluation of Large Vision-Language Models [9.928321287432365]
Causal reasoning is fundamental to human intelligence and crucial for effective decision-making in real-world environments.
We introduce a fine-grained and unified definition of causality involving interactions between humans and objects.
We construct a novel dataset, CELLO, consisting of 14,094 causal questions across all four levels of causality.
arXiv Detail & Related papers (2024-06-27T12:34:52Z) - Causal Kripke Models [0.0]
This work extends Halpern and Pearl's causal models for actual causality to a possible world semantics environment.
Using this framework we introduce a logic of actual causality with modal operators, which allows for reasoning about causality in scenarios involving multiple possibilities, temporality, knowledge and uncertainty.
arXiv Detail & Related papers (2023-07-11T07:08:14Z) - A Survey on Causal Discovery: Theory and Practice [2.741266294612776]
Causal inference is designed to quantify the underlying relationships that connect a cause to its effect.
In this paper, we explore recent advancements in a unified manner, provide a consistent overview of existing algorithms, report useful tools and data, present real-world applications.
arXiv Detail & Related papers (2023-05-17T08:18:56Z) - Phenomenological Causality [14.817342045377842]
We propose a notion of 'phenomenological causality' whose basic concept is a set of elementary actions.
We argue that it is consistent with the causal Markov condition when the system under consideration interacts with other variables that control the elementary actions.
arXiv Detail & Related papers (2022-11-15T13:05:45Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Behaviour Explanation via Causal Analysis of Mental States: A
Preliminary Report [0.0]
We build on Khan and Lesp'erance's work to support causal reasoning about conative effects.
In our framework, one can reason about causes of motivational states, and we allow motivation-altering actions to be causes of observed effects.
We illustrate this formalization along with a model of goal recognition can be utilized to explain agent behaviour in communicative multiagent contexts.
arXiv Detail & Related papers (2022-05-16T04:46:50Z) - Towards Causal Representation Learning [96.110881654479]
The two fields of machine learning and graphical causality arose and developed separately.
There is now cross-pollination and increasing interest in both fields to benefit from the advances of the other.
arXiv Detail & Related papers (2021-02-22T15:26:57Z) - Thinking About Causation: A Causal Language with Epistemic Operators [58.720142291102135]
We extend the notion of a causal model with a representation of the state of an agent.
On the side of the object language, we add operators to express knowledge and the act of observing new information.
We provide a sound and complete axiomatization of the logic, and discuss the relation of this framework to causal team semantics.
arXiv Detail & Related papers (2020-10-30T12:16:45Z) - Aligning Faithful Interpretations with their Social Attribution [58.13152510843004]
We find that the requirement of model interpretations to be faithful is vague and incomplete.
We identify that the problem is a misalignment between the causal chain of decisions (causal attribution) and the attribution of human behavior to the interpretation (social attribution)
arXiv Detail & Related papers (2020-06-01T16:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.