Transfer Learning of Tabular Data by Finetuning Large Language Models
- URL: http://arxiv.org/abs/2501.06863v1
- Date: Sun, 12 Jan 2025 16:23:18 GMT
- Title: Transfer Learning of Tabular Data by Finetuning Large Language Models
- Authors: Shourav B. Rabbani, Ibna Kowsar, Manar D. Samad,
- Abstract summary: This paper investigates the effectiveness of an application programming interface (API) and transfer learning of large language models (LLM)
LLM APIs respond to input text prompts with tokenized data and instructions, whereas transfer learning finetunes an LLM for a target classification task.
This paper proposes an end-to-end finetuning of LLM to demonstrate cross-data transfer learning on ten benchmark data sets.
- Score: 0.0
- License:
- Abstract: Despite the artificial intelligence (AI) revolution, deep learning has yet to achieve much success with tabular data due to heterogeneous feature space and limited sample sizes without viable transfer learning. The new era of generative AI, powered by large language models (LLM), brings unprecedented learning opportunities to diverse data and domains. This paper investigates the effectiveness of an LLM application programming interface (API) and transfer learning of LLM in tabular data classification. LLM APIs respond to input text prompts with tokenized data and instructions, whereas transfer learning finetunes an LLM for a target classification task. This paper proposes an end-to-end finetuning of LLM to demonstrate cross-data transfer learning on ten benchmark data sets when large pre-trained tabular data models do not exist to facilitate transfer learning. The proposed LLM finetuning method outperforms state-of-the-art machine and deep learning methods on tabular data with less than ten features - a standard feature size for tabular data sets. The transfer learning approach uses a fraction of the computational cost of other deep learning or API-based solutions while ensuring competitive or superior classification performance.
Related papers
- Scalable In-Context Learning on Tabular Data via Retrieval-Augmented Large Language Models [15.603556124006479]
We propose retrieval-augmented language models for scalable TabICL.
Our approach incorporates a customized retrieval module, combined with retrieval-guided instruction-tuning for LLMs.
This enables LLMs to effectively leverage larger datasets, achieving significantly improved performance across 69 widely recognized datasets.
arXiv Detail & Related papers (2025-02-05T13:16:41Z) - Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.
LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.
Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - Tabular Transfer Learning via Prompting LLMs [52.96022335067357]
We propose a novel framework, Prompt to Transfer (P2T), that utilizes unlabeled (or heterogeneous) source data with large language models (LLMs)
P2T identifies a column feature in a source dataset that is strongly correlated with a target task feature to create examples relevant to the target task, thus creating pseudo-demonstrations for prompts.
arXiv Detail & Related papers (2024-08-09T11:30:52Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models [21.10890310571397]
Large Language Models (LLMs) can be applied to a diverse set of tasks, but the critical issues of data contamination and memorization are often glossed over.
This work introduces a variety of different techniques to assess whether a language model has seen a dataset during training.
We then compare the few-shot learning performance of LLMs on datasets that were seen during training to the performance on datasets released after training.
arXiv Detail & Related papers (2024-04-09T10:58:21Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.