論文の概要: Driver Age and Its Effect on Key Driving Metrics: Insights from Dynamic Vehicle Data
- arxiv url: http://arxiv.org/abs/2501.06918v1
- Date: Sun, 12 Jan 2025 20:01:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:22:29.111735
- Title: Driver Age and Its Effect on Key Driving Metrics: Insights from Dynamic Vehicle Data
- Title(参考訳): 運転年齢とキードライビング指標への影響:動的車両データからの考察
- Authors: Aparna Joshi, Kojo Adugyamfi, Jennifer Merickel, Pujitha Gunaratne, Anuj Sharma,
- Abstract要約: 2030年までに65歳以上の高齢者は50%以上増加し、道路上の高齢者の数が大幅に増加すると予想されている。
70人以上のドライバーは、40代や50代よりも死亡率が高い。
- 参考スコア(独自算出の注目度): 2.3072218701168166
- License:
- Abstract: By 2030, the senior population aged 65 and older is expected to increase by over 50%, significantly raising the number of older drivers on the road. Drivers over 70 face higher crash death rates compared to those in their forties and fifties, underscoring the importance of developing more effective safety interventions for this demographic. Although the impact of aging on driving behavior has been studied, there is limited research on how these behaviors translate into real-world driving scenarios. This study addresses this need by leveraging Naturalistic Driving Data (NDD) to analyze driving performance measures - specifically, speed limit adherence on interstates and deceleration at stop intersections, both of which may be influenced by age-related declines. Using NDD, we developed Cumulative Distribution Functions (CDFs) to establish benchmarks for key driving behaviors among senior and young drivers. Our analysis, which included anomaly detection, benchmark comparisons, and accuracy evaluations, revealed significant differences in driving patterns primarily related to speed limit adherence at 75mph. While our approach shows promising potential for enhancing Advanced Driver Assistance Systems (ADAS) by providing tailored interventions based on age-specific adherence to speed limit driving patterns, we recognize the need for additional data to refine and validate metrics for other driving behaviors. By establishing precise benchmarks for various driving performance metrics, ADAS can effectively identify anomalies, such as abrupt deceleration, which may indicate impaired driving or other safety concerns. This study lays a strong foundation for future research aimed at improving safety interventions through detailed driving behavior analysis.
- Abstract(参考訳): 2030年までに65歳以上の高齢者は50%以上増加し、道路上の高齢者の数が大幅に増加すると予想されている。
70人以上のドライバーは、40代や50代のドライバーよりも死亡率が高く、この人口統計学にとってより効果的な安全介入を開発することの重要性を強調している。
高齢化が運転行動に与える影響は研究されているが、これらの行動が現実の運転シナリオにどのように変換されるかは限られている。
本研究は、NDD(Naturistic Driving Data)を利用して、運転実績の計測を行う。
NDDを用いて,高齢者と若年ドライバーのキー駆動行動のベンチマークを構築するために,累積分布関数(CDF)を開発した。
また, 異常検出, ベンチマーク比較, 精度評価などの解析結果から, 75mphにおける速度限界の付着と駆動パターンに有意な差が認められた。
提案手法は,運転パターンの速度制限に要する年齢依存性に基づく介入を提供することにより,高度な運転支援システム(ADAS)を向上する可能性を示しているが,他の運転行動の指標を洗練・検証するための追加データの必要性を認識している。
様々な駆動性能指標の正確なベンチマークを確立することで、ADASは急激な減速などの異常を効果的に識別することができる。
本研究は、詳細な運転行動分析を通じて安全介入を改善することを目的とした将来の研究の基盤となる。
関連論文リスト
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - Masked EEG Modeling for Driving Intention Prediction [27.606175591082756]
本稿では,BCI支援運転における新たな研究方向を開拓し,運転意図に関連する神経パターンについて検討する。
本研究では,左旋回,右旋回,ストレート進行といった人間の運転意図を予測する新しい脳波モデリングフレームワークを提案する。
本モデルでは, 運転意図予測時に85.19%の精度を達成し, 交通事故の軽減に期待できる可能性を示した。
論文 参考訳(メタデータ) (2024-08-08T03:49:05Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - In-vehicle Sensing and Data Analysis for Older Drivers with Mild
Cognitive Impairment [0.8426358786287627]
本研究の目的は、高精度の位置決めとテレマティクスデータを得ることができる低コストの車内センシングハードウェアを設計することである。
軽度認知障害(MCI)と軽度認知障害(MCI)を比較した統計的分析の結果,MCIはよりスムーズで安全な運転パターンを示すことが明らかとなった。
我々のランダムフォレストモデルでは、夜間旅行の数、旅行数、教育がデータ評価に最も影響を及ぼす要因として特定されました。
論文 参考訳(メタデータ) (2023-11-15T15:47:24Z) - Using Visual and Vehicular Sensors for Driver Behavior Analysis: A
Survey [0.0]
危険ドライバーは米国での死亡事故の70%を占めている。
本稿では,視覚・車体データを用いた運転者の行動分析手法について検討する。
論文 参考訳(メタデータ) (2023-08-25T14:33:59Z) - Studying the Impact of Semi-Cooperative Drivers on Overall Highway Flow [76.38515853201116]
半協調行動は、人間ドライバーの本質的な性質であり、自律運転には考慮すべきである。
新たな自律型プランナーは、社会的に準拠した軌道を生成するために、人間のドライバーの社会的価値指向(SVO)を考慮することができる。
エージェントが反復的最適応答のゲーム理論バージョンをデプロイする暗黙的な半協調運転について検討する。
論文 参考訳(メタデータ) (2023-04-23T16:01:36Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [50.936478241688114]
非客観的運転経験のモデル化は困難であり,既存手法では運転経験蓄積手順を模擬する機構が欠如している。
本稿では,運転経験蓄積手順をモデル化するFeedBack Loop Network (FBLNet)を提案する。
提案モデルでは,既存の手法に対して強い優位性を示し,2つのドライバー注意ベンチマークデータセットの性能向上を実現している。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Dynamic and Systematic Survey of Deep Learning Approaches for Driving
Behavior Analysis [2.879036956042183]
運転行動の分析は、言及された問題の最適化と回避につながる可能性がある。
運転の種類を特定して、その運転の結果にマッピングすることで、予防するためのモデルを得ることができます。
論文 参考訳(メタデータ) (2021-09-18T19:47:03Z) - Driver Drowsiness Classification Based on Eye Blink and Head Movement
Features Using the k-NN Algorithm [8.356765961526955]
この研究は、ドライバー監視カメラの信号を用いて、車両内の運転者の眠気検知を拡張することを目的としている。
この目的のために、運転シミュレータ実験において、運転者の点眼行動と頭部運動に関連する35の特徴を抽出する。
最高の特徴セットの分析は、運転者の瞬き行動と頭部の動きに対する眠気の影響についての貴重な洞察を与える。
論文 参考訳(メタデータ) (2020-09-28T12:37:38Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
本稿では,より正確かつ人間らしく運転できるエンド・ツー・エンド駆動モデルについて検討する。
HERE Technologiesのセマンティックマップとビジュアルマップを活用し、既存のDrive360データセットを拡張します。
私たちのモデルは、実世界の運転データ60時間3000kmのDrive360+HEREデータセットでトレーニングされ、評価されています。
論文 参考訳(メタデータ) (2020-07-10T22:25:27Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
トレーニング外の配布(OOD)シナリオは、デプロイ時にエージェントを学ぶ上で一般的な課題である。
インプロバスト模倣計画(RIP)と呼ばれる不確実性を考慮した計画手法を提案する。
提案手法は,OODシーンにおける過信および破滅的な外挿を低減し,分布変化を検知し,回復することができる。
分散シフトを伴うタスク群に対する駆動エージェントのロバスト性を評価するために,自動走行車ノベルシーンベンチマークであるtexttCARNOVEL を導入する。
論文 参考訳(メタデータ) (2020-06-26T11:07:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。