CULTURE3D: Cultural Landmarks and Terrain Dataset for 3D Applications
- URL: http://arxiv.org/abs/2501.06927v2
- Date: Sun, 02 Feb 2025 05:08:46 GMT
- Title: CULTURE3D: Cultural Landmarks and Terrain Dataset for 3D Applications
- Authors: Xinyi Zheng, Steve Zhang, Weizhe Lin, Aaron Zhang, Walterio W. Mayol-Cuevas, Junxiao Shen,
- Abstract summary: We present a large-scale fine-grained dataset using high-resolution images captured from locations worldwide.
Our dataset is built using drone-captured aerial imagery, which provides a more accurate perspective for capturing real-world site layouts and architectural structures.
The dataset enables seamless integration with multi-modal data, supporting a range of 3D applications, from architectural reconstruction to virtual tourism.
- Score: 11.486451047360248
- License:
- Abstract: In this paper, we present a large-scale fine-grained dataset using high-resolution images captured from locations worldwide. Compared to existing datasets, our dataset offers a significantly larger size and includes a higher level of detail, making it uniquely suited for fine-grained 3D applications. Notably, our dataset is built using drone-captured aerial imagery, which provides a more accurate perspective for capturing real-world site layouts and architectural structures. By reconstructing environments with these detailed images, our dataset supports applications such as the COLMAP format for Gaussian Splatting and the Structure-from-Motion (SfM) method. It is compatible with widely-used techniques including SLAM, Multi-View Stereo, and Neural Radiance Fields (NeRF), enabling accurate 3D reconstructions and point clouds. This makes it a benchmark for reconstruction and segmentation tasks. The dataset enables seamless integration with multi-modal data, supporting a range of 3D applications, from architectural reconstruction to virtual tourism. Its flexibility promotes innovation, facilitating breakthroughs in 3D modeling and analysis.
Related papers
- Textured Mesh Saliency: Bridging Geometry and Texture for Human Perception in 3D Graphics [50.23625950905638]
We present a new dataset for textured mesh saliency, created through an innovative eye-tracking experiment in a six degrees of freedom (6-DOF) VR environment.
Our proposed model predicts saliency maps for textured mesh surfaces by treating each triangular face as an individual unit and assigning a saliency density value to reflect the importance of each local surface region.
arXiv Detail & Related papers (2024-12-11T08:27:33Z) - Open-Vocabulary High-Resolution 3D (OVHR3D) Data Segmentation and Annotation Framework [1.1280113914145702]
This research aims to design and develop a comprehensive and efficient framework for 3D segmentation tasks.
The framework integrates Grounding DINO and Segment anything Model, augmented by an enhancement in 2D image rendering via 3D mesh.
arXiv Detail & Related papers (2024-12-09T07:39:39Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - Den-SOFT: Dense Space-Oriented Light Field DataseT for 6-DOF Immersive Experience [28.651514326042648]
We have built a custom mobile multi-camera large-space dense light field capture system.
Our aim is to contribute to the development of popular 3D scene reconstruction algorithms.
The collected dataset is much denser than existing datasets.
arXiv Detail & Related papers (2024-03-15T02:39:44Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
We present a novel approach to the generation of static and articulated 3D assets that has a 3D autodecoder at its core.
The 3D autodecoder framework embeds properties learned from the target dataset in the latent space.
We then identify the appropriate intermediate volumetric latent space, and introduce robust normalization and de-normalization operations.
arXiv Detail & Related papers (2023-07-07T17:59:14Z) - UniG3D: A Unified 3D Object Generation Dataset [75.49544172927749]
UniG3D is a unified 3D object generation dataset constructed by employing a universal data transformation pipeline on ShapeNet datasets.
This pipeline converts each raw 3D model into comprehensive multi-modal data representation.
The selection of data sources for our dataset is based on their scale and quality.
arXiv Detail & Related papers (2023-06-19T07:03:45Z) - MobileBrick: Building LEGO for 3D Reconstruction on Mobile Devices [78.20154723650333]
High-quality 3D ground-truth shapes are critical for 3D object reconstruction evaluation.
We introduce a novel multi-view RGBD dataset captured using a mobile device.
We obtain precise 3D ground-truth shape without relying on high-end 3D scanners.
arXiv Detail & Related papers (2023-03-03T14:02:50Z) - A Real World Dataset for Multi-view 3D Reconstruction [28.298548207213468]
We present a dataset of 371 3D models of everyday tabletop objects along with their 320,000 real world RGB and depth images.
We primarily focus on learned multi-view 3D reconstruction due to the lack of appropriate real world benchmark for the task and demonstrate that our dataset can fill that gap.
arXiv Detail & Related papers (2022-03-22T00:15:54Z) - Ground material classification and for UAV-based photogrammetric 3D data
A 2D-3D Hybrid Approach [1.3359609092684614]
In recent years, photogrammetry has been widely used in many areas to create 3D virtual data representing the physical environment.
These cutting-edge technologies have caught the US Army and Navy's attention for the purpose of rapid 3D battlefield reconstruction, virtual training, and simulations.
arXiv Detail & Related papers (2021-09-24T22:29:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.