論文の概要: Patent Novelty Assessment Accelerating Innovation and Patent Prosecution
- arxiv url: http://arxiv.org/abs/2501.06956v1
- Date: Sun, 12 Jan 2025 22:25:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:26:18.886718
- Title: Patent Novelty Assessment Accelerating Innovation and Patent Prosecution
- Title(参考訳): イノベーションと特許手続を加速する特許ノベルティアセスメント
- Authors: Kapil Kashyap, Sean Fargose, Gandhar Dhonde, Aditya Mishra,
- Abstract要約: 本報告では,特許ノベルティ評価とクレーム生成システムについて紹介する。
我々のシステムは、特許請求の複雑さをナビゲートし把握するための直感的なプラットフォームを大学生や研究者に提供する。
従来の分析システムとは異なり、我々のイニシアチブは独自に開発した中国語のAPIを利用して、非並列の精度と妥当性を保証する。
- 参考スコア(独自算出の注目度): 0.873811641236639
- License:
- Abstract: In the rapidly evolving landscape of technological innovation, safeguarding intellectual property rights through patents is crucial for fostering progress and stimulating research and development investments. This report introduces a ground-breaking Patent Novelty Assessment and Claim Generation System, meticulously crafted to dissect the inventive aspects of intellectual property and simplify access to extensive patent claim data. Addressing a crucial gap in academic institutions, our system provides college students and researchers with an intuitive platform to navigate and grasp the intricacies of patent claims, particularly tailored for the nuances of Chinese patents. Unlike conventional analysis systems, our initiative harnesses a proprietary Chinese API to ensure unparalleled precision and relevance. The primary challenge lies in the complexity of accessing and comprehending diverse patent claims, inhibiting effective innovation upon existing ideas. Our solution aims to overcome these barriers by offering a bespoke approach that seamlessly retrieves comprehensive claim information, finely tuned to the specifics of the Chinese patent landscape. By equipping users with efficient access to comprehensive patent claim information, our transformative platform seeks to ignite informed exploration and innovation in the ever-evolving domain of intellectual property. Its envisioned impact transcends individual colleges, nurturing an environment conducive to research and development while deepening the understanding of patented concepts within the academic community.
- Abstract(参考訳): 技術革新の急速な進展の中で、特許による知的財産権の保護は、進歩の促進と研究開発投資の促進に不可欠である。
本報告では,知的財産の創発的側面を詳細に把握し,広範な特許請求データへのアクセスを簡易化する,画期的な特許ノベルティ評価・クレーム生成システムを紹介する。
学術機関における重要なギャップに対処するため,我々のシステムは,中国の特許のニュアンスに特化して,特許請求の複雑さをナビゲートし把握するための直感的なプラットフォームを大学生や研究者に提供する。
従来の分析システムとは異なり、我々のイニシアチブは独自に開発した中国語のAPIを利用して、非並列の精度と妥当性を保証する。
最大の課題は、多様な特許請求へのアクセスと解釈の複雑さであり、既存のアイデアに対する効果的なイノベーションを阻害している。
当社のソリューションは,中国の特許ランドスケープの具体性に合わせて,包括的なクレーム情報をシームレスに取得する,安易なアプローチを提供することによって,これらの障壁を克服することを目的としています。
ユーザに対して、包括的な特許請求情報への効率的なアクセスを提供することによって、私たちの変革的プラットフォームは、進化を続ける知的財産の領域における情報探索とイノベーションに火をつけようとしている。
個々の大学を超越し、研究と開発に寄与する環境を育成し、学術コミュニティにおける特許概念の理解を深める。
関連論文リスト
- EvoPat: A Multi-LLM-based Patents Summarization and Analysis Agent [0.0]
EvoPatはマルチLLMベースの特許エージェントで、ユーザーが検索生成(RAG)と高度な検索戦略を通じて特許を分析するのを支援する。
特許要約,比較分析,技術評価などのタスクにおいて,EvoPatがGPT-4より優れていることを示す。
論文 参考訳(メタデータ) (2024-12-24T02:21:09Z) - PatentEdits: Framing Patent Novelty as Textual Entailment [62.8514393375952]
このデータセットには105万例の修正が成功している。
我々は、文章を文単位でラベル付けするアルゴリズムを設計し、これらの編集がいかに大きな言語モデルで予測できるかを確立する。
引用引用文と起草文の文的含意を評価することは,どの発明的主張が変化しないか,あるいは先行技術に関して新規かを予測するのに特に有効であることを示す。
論文 参考訳(メタデータ) (2024-11-20T17:23:40Z) - Towards Automated Patent Workflows: AI-Orchestrated Multi-Agent Framework for Intellectual Property Management and Analysis [0.0]
PatExpertは、特許関連のタスクを合理化し最適化するために設計された、自律的なマルチエージェント会話フレームワークである。
このフレームワークは、さまざまな特許関連のタスクに対してタスク固有の専門家エージェントをコーディネートするメタエージェントと、エラーハンドリングとフィードバックプロビジョニングのための批判エージェントで構成されている。
論文 参考訳(メタデータ) (2024-09-21T13:44:34Z) - PatentGPT: A Large Language Model for Patent Drafting Using Knowledge-based Fine-tuning Method [1.4496326701907591]
既存の大規模言語モデル(LLM)は、専門知識の欠如とコンテキスト認識の欠如により、IP生成領域では不足することが多い。
我々は,LLMの知識微調整(KFT)のための画期的なフレームワークを提案する。
我々のモデルであるPatentGPTは、最先端モデルと比較して、特許関連のベンチマークテストで最大400%高い性能を示した。
論文 参考訳(メタデータ) (2024-08-26T12:00:29Z) - Structural Representation Learning and Disentanglement for Evidential Chinese Patent Approval Prediction [19.287231890434718]
本稿では,検索に基づく分類手法を用いて,本課題の先駆的取り組みについて述べる。
本稿では,構造表現学習と絡み合いに着目したDiSPatという新しいフレームワークを提案する。
弊社のフレームワークは、特許承認の予測に関する最先端のベースラインを超越し、明確性の向上も示している。
論文 参考訳(メタデータ) (2024-08-23T05:44:16Z) - Natural Language Processing in Patents: A Survey [0.0]
重要な技術的および法的情報をカプセル化した特許は、自然言語処理(NLP)アプリケーションのための豊富なドメインを提供する。
NLP技術が発展するにつれて、大規模言語モデル(LLM)は一般的なテキスト処理や生成タスクにおいて優れた能力を示してきた。
本稿は,NLP研究者に,この複雑な領域を効率的にナビゲートするために必要な知識を付与することを目的とする。
論文 参考訳(メタデータ) (2024-03-06T23:17:16Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
深部不透明ニューラルネットワーク(DNN)を利用した多ラベル特許分類のための最先端手法
レイヤワイド関連伝搬(Layer-wise Relevance propagation, LRP)を導入し, 特許の詳細な分類手法を提案する。
関連性スコアを考慮し、予測された特許クラスに関連する単語を視覚化して説明を生成する。
論文 参考訳(メタデータ) (2023-10-31T14:11:37Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。