論文の概要: EvoPat: A Multi-LLM-based Patents Summarization and Analysis Agent
- arxiv url: http://arxiv.org/abs/2412.18100v1
- Date: Tue, 24 Dec 2024 02:21:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:25.091508
- Title: EvoPat: A Multi-LLM-based Patents Summarization and Analysis Agent
- Title(参考訳): EvoPat: マルチLLMベースの特許要約分析エージェント
- Authors: Suyuan Wang, Xueqian Yin, Menghao Wang, Ruofeng Guo, Kai Nan,
- Abstract要約: EvoPatはマルチLLMベースの特許エージェントで、ユーザーが検索生成(RAG)と高度な検索戦略を通じて特許を分析するのを支援する。
特許要約,比較分析,技術評価などのタスクにおいて,EvoPatがGPT-4より優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rapid growth of scientific techniques and knowledge is reflected in the exponential increase in new patents filed annually. While these patents drive innovation, they also present significant burden for researchers and engineers, especially newcomers. To avoid the tedious work of navigating a vast and complex landscape to identify trends and breakthroughs, researchers urgently need efficient tools to summarize, evaluate, and contextualize patents, revealing their innovative contributions and underlying scientific principles.To address this need, we present EvoPat, a multi-LLM-based patent agent designed to assist users in analyzing patents through Retrieval-Augmented Generation (RAG) and advanced search strategies. EvoPat leverages multiple Large Language Models (LLMs), each performing specialized roles such as planning, identifying innovations, and conducting comparative evaluations. The system integrates data from local databases, including patents, literature, product catalogous, and company repositories, and online searches to provide up-to-date insights. The ability to collect information not included in original database automatically is also implemented. Through extensive testing in the natural language processing (NLP) domain, we demonstrate that EvoPat outperforms GPT-4 in tasks such as patent summarization, comparative analysis, and technical evaluation. EvoPat represents a significant step toward creating AI-powered tools that empower researchers and engineers to efficiently navigate the complexities of the patent landscape.
- Abstract(参考訳): 科学技術と知識の急速な成長は、毎年出願される新しい特許の指数的な増加に反映されている。
これらの特許はイノベーションを促進するが、研究者やエンジニア、特に新参者にとって大きな負担となる。
大規模で複雑な風景をナビゲートして動向やブレークスルーを特定するという面倒な作業を避けるため、研究者は、特許を要約し、評価し、文脈化するための効率的なツールを緊急に必要としており、その革新的な貢献と基礎となる科学的原則を明らかにし、このニーズに対処するため、検索戦略や検索戦略を通じて、ユーザーが特許を分析するのを支援するために設計されたマルチLLMベースの特許エージェントであるEvoPatを提示する。
EvoPatは複数の大規模言語モデル(LLM)を活用し、それぞれが計画、イノベーションの特定、比較評価といった特別な役割を担っている。
このシステムは、特許、文献、製品カタログ、企業リポジトリ、オンライン検索など、ローカルデータベースのデータを統合し、最新の洞察を提供する。
元のデータベースに含まれていない情報を自動で収集する機能も実装されている。
自然言語処理(NLP)分野における広範なテストを通じて,特許要約や比較分析,技術評価などのタスクにおいて,EvoPatがGPT-4より優れていることを示す。
EvoPatは、研究者やエンジニアが特許の複雑さを効率的にナビゲートできるAIツールを開発するための重要なステップだ。
関連論文リスト
- O1 Replication Journey: A Strategic Progress Report -- Part 1 [52.062216849476776]
本稿では,O1 Replication Journeyに具体化された人工知能研究の先駆的アプローチを紹介する。
我々の方法論は、長期化したチームベースのプロジェクトの不規則性を含む、現代のAI研究における重要な課題に対処する。
本稿では,モデルにショートカットだけでなく,完全な探索プロセスの学習を促す旅行学習パラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-08T15:13:01Z) - Towards Automated Patent Workflows: AI-Orchestrated Multi-Agent Framework for Intellectual Property Management and Analysis [0.0]
PatExpertは、特許関連のタスクを合理化し最適化するために設計された、自律的なマルチエージェント会話フレームワークである。
このフレームワークは、さまざまな特許関連のタスクに対してタスク固有の専門家エージェントをコーディネートするメタエージェントと、エラーハンドリングとフィードバックプロビジョニングのための批判エージェントで構成されている。
論文 参考訳(メタデータ) (2024-09-21T13:44:34Z) - PatentGPT: A Large Language Model for Patent Drafting Using Knowledge-based Fine-tuning Method [1.4496326701907591]
既存の大規模言語モデル(LLM)は、専門知識の欠如とコンテキスト認識の欠如により、IP生成領域では不足することが多い。
我々は,LLMの知識微調整(KFT)のための画期的なフレームワークを提案する。
我々のモデルであるPatentGPTは、最先端モデルと比較して、特許関連のベンチマークテストで最大400%高い性能を示した。
論文 参考訳(メタデータ) (2024-08-26T12:00:29Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - A Comprehensive Survey on AI-based Methods for Patents [14.090575139188422]
AIベースのツールは、特許サイクルにおける重要なタスクを合理化し、強化する機会を提供する。
この学際的な調査は、AIと特許分析の交差点で働く研究者や実践者のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2024-04-02T20:44:06Z) - Natural Language Processing in Patents: A Survey [0.0]
重要な技術的および法的情報をカプセル化した特許は、自然言語処理(NLP)アプリケーションのための豊富なドメインを提供する。
NLP技術が発展するにつれて、大規模言語モデル(LLM)は一般的なテキスト処理や生成タスクにおいて優れた能力を示してきた。
本稿は,NLP研究者に,この複雑な領域を効率的にナビゲートするために必要な知識を付与することを目的とする。
論文 参考訳(メタデータ) (2024-03-06T23:17:16Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
深部不透明ニューラルネットワーク(DNN)を利用した多ラベル特許分類のための最先端手法
レイヤワイド関連伝搬(Layer-wise Relevance propagation, LRP)を導入し, 特許の詳細な分類手法を提案する。
関連性スコアを考慮し、予測された特許クラスに関連する単語を視覚化して説明を生成する。
論文 参考訳(メタデータ) (2023-10-31T14:11:37Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and
Multi-Purpose Corpus of Patent Applications [8.110699646062384]
ハーバードUSPTO特許データセット(HUPD)について紹介する。
450万件以上の特許文書があり、HUPDは同等のコーパスの2倍から3倍の大きさだ。
各アプリケーションのメタデータとすべてのテキストフィールドを提供することで、このデータセットは研究者が新しいNLPタスクセットを実行することを可能にする。
論文 参考訳(メタデータ) (2022-07-08T17:57:15Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
大規模事前訓練モデル(PTM)は近年大きな成功を収め、人工知能(AI)分野におけるマイルストーンとなった。
知識を巨大なパラメータに格納し、特定のタスクを微調整することで、巨大なパラメータに暗黙的にエンコードされた豊富な知識は、さまざまな下流タスクの恩恵を受けることができる。
AIコミュニティが、モデルをスクラッチから学習するのではなく、下流タスクのバックボーンとしてPTMを採用することは、今、コンセンサスになっている。
論文 参考訳(メタデータ) (2021-06-14T02:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。