TFLAG:Towards Practical APT Detection via Deviation-Aware Learning on Temporal Provenance Graph
- URL: http://arxiv.org/abs/2501.06997v1
- Date: Mon, 13 Jan 2025 01:08:06 GMT
- Title: TFLAG:Towards Practical APT Detection via Deviation-Aware Learning on Temporal Provenance Graph
- Authors: Wenhan Jiang, Tingting Chai, Hongri Liu, Kai Wang, Hongke Zhang,
- Abstract summary: Advanced Persistent Threat (APT) have grown increasingly complex and concealed.
Recent studies have incorporated graph learning techniques to extract detailed information from provenance graphs.
We introduce TFLAG, an advanced anomaly detection framework.
- Score: 5.3620586848260015
- License:
- Abstract: Advanced Persistent Threat (APT) have grown increasingly complex and concealed, posing formidable challenges to existing Intrusion Detection Systems in identifying and mitigating these attacks. Recent studies have incorporated graph learning techniques to extract detailed information from provenance graphs, enabling the detection of attacks with greater granularity. Nevertheless, existing studies have largely overlooked the continuous yet subtle temporal variations in the structure of provenance graphs, which may correspond to surreptitious perturbation anomalies in ongoing APT attacks. Therefore, we introduce TFLAG, an advanced anomaly detection framework that for the first time integrates the structural dynamic extraction capabilities of temporal graph model with the anomaly delineation abilities of deviation networks to pinpoint covert attack activities in provenance graphs. This self-supervised integration framework leverages the graph model to extract neighbor interaction data under continuous temporal changes from historical benign behaviors within provenance graphs, while simultaneously utilizing deviation networks to accurately distinguish authentic attack activities from false positive deviations due to unexpected subtle perturbations. The experimental results indicate that, through a comprehensive design that utilizes both attribute and temporal information, it can accurately identify the time windows associated with APT attack behaviors without prior knowledge (e.g., labeled data samples), demonstrating superior accuracy compared to current state-of-the-art methods in differentiating between attack events and system false positive events.
Related papers
- Extreme Value Modelling of Feature Residuals for Anomaly Detection in Dynamic Graphs [14.8066991252587]
detecting anomalies in a temporal sequence of graphs can be applied to areas such as the detection of accidents in transport networks and cyber attacks in computer networks.
Existing methods for detecting abnormal graphs can suffer from multiple limitations, such as high false positive rates and difficulties with handling variable-sized graphs and non-trivial temporal dynamics.
We propose a technique where temporal dependencies are explicitly modelled via time series analysis of a large set of pertinent graph features, followed by using residuals to remove the dependencies.
arXiv Detail & Related papers (2024-10-08T05:00:53Z) - LTRDetector: Exploring Long-Term Relationship for Advanced Persistent Threats Detection [20.360010908574303]
Advanced Persistent Threat (APT) is challenging to detect due to prolonged duration, infrequent occurrence, and adept concealment techniques.
Existing approaches primarily concentrate on the observable traits of attack behaviors, neglecting the intricate relationships formed throughout the persistent attack lifecycle.
We present an innovative APT detection framework named LTRDetector, implementing an end-to-end holistic operation.
arXiv Detail & Related papers (2024-04-04T02:30:51Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - TFDPM: Attack detection for cyber-physical systems with diffusion
probabilistic models [10.389972581904999]
We propose TFDPM, a general framework for attack detection tasks in CPSs.
It simultaneously extracts temporal pattern and feature pattern given the historical data.
The noise scheduling network increases the detection speed by three times.
arXiv Detail & Related papers (2021-12-20T13:13:29Z) - Graph Neural Network-Based Anomaly Detection in Multivariate Time Series [17.414474298706416]
We develop a new way to detect anomalies in high-dimensional time series data.
Our approach combines a structure learning approach with graph neural networks.
We show that our method detects anomalies more accurately than baseline approaches.
arXiv Detail & Related papers (2021-06-13T09:07:30Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.