論文の概要: IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare
- arxiv url: http://arxiv.org/abs/2501.07039v1
- Date: Mon, 13 Jan 2025 03:41:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:24:22.467653
- Title: IoT-Based Real-Time Medical-Related Human Activity Recognition Using Skeletons and Multi-Stage Deep Learning for Healthcare
- Title(参考訳): 骨格と多段階深層学習を用いたIoTを用いたリアルタイム医療関連人的活動認識
- Authors: Subrata Kumer Paul, Abu Saleh Musa Miah, Rakhi Rani Paul, Md. Ekramul Hamid, Jungpil Shin, Md Abdur Rahim,
- Abstract要約: IoT(Internet of Things)とモバイル技術は、患者のリアルタイムモニタリングと診断を可能にすることによって、医療を大きく変革した。
HMR(Human Motion Recognition)は、高い計算要求、低い精度、限られた適応性といった課題を継続する。
本研究は,IoTと統合した多段階深層学習技術を活用したMRHA検出のための新しいHMR手法を提案する。
- 参考スコア(独自算出の注目度): 1.5236380958983642
- License:
- Abstract: The Internet of Things (IoT) and mobile technology have significantly transformed healthcare by enabling real-time monitoring and diagnosis of patients. Recognizing medical-related human activities (MRHA) is pivotal for healthcare systems, particularly for identifying actions that are critical to patient well-being. However, challenges such as high computational demands, low accuracy, and limited adaptability persist in Human Motion Recognition (HMR). While some studies have integrated HMR with IoT for real-time healthcare applications, limited research has focused on recognizing MRHA as essential for effective patient monitoring. This study proposes a novel HMR method for MRHA detection, leveraging multi-stage deep learning techniques integrated with IoT. The approach employs EfficientNet to extract optimized spatial features from skeleton frame sequences using seven Mobile Inverted Bottleneck Convolutions (MBConv) blocks, followed by ConvLSTM to capture spatio-temporal patterns. A classification module with global average pooling, a fully connected layer, and a dropout layer generates the final predictions. The model is evaluated on the NTU RGB+D 120 and HMDB51 datasets, focusing on MRHA, such as sneezing, falling, walking, sitting, etc. It achieves 94.85% accuracy for cross-subject evaluations and 96.45% for cross-view evaluations on NTU RGB+D 120, along with 89.00% accuracy on HMDB51. Additionally, the system integrates IoT capabilities using a Raspberry Pi and GSM module, delivering real-time alerts via Twilios SMS service to caregivers and patients. This scalable and efficient solution bridges the gap between HMR and IoT, advancing patient monitoring, improving healthcare outcomes, and reducing costs.
- Abstract(参考訳): IoT(Internet of Things)とモバイル技術は、患者のリアルタイムモニタリングと診断を可能にすることによって、医療を大きく変革した。
医療関連人的活動(MRHA)の認識は、医療システム、特に患者の健康に重要な行動を特定するために重要である。
しかし、Human Motion Recognition(HMR)では、高い計算要求、低い精度、限られた適応性といった課題が続いている。
HMRとIoTをリアルタイムヘルスケアアプリケーションに統合する研究もあるが、MRHAを効果的な患者モニタリングに不可欠なものとして認識することに焦点を当てている研究は限られている。
本研究は,IoTと統合した多段階深層学習技術を活用したMRHA検出のための新しいHMR手法を提案する。
このアプローチでは、EfficientNetを使用して、7つのMobile Inverted Bottleneck Convolutions (MBConv)ブロックを使用して、スケルトンフレームシーケンスから最適化された空間特徴を抽出し、続いてConvLSTMで時空間パターンをキャプチャする。
グローバル平均プーリング、完全連結層、およびドロップアウト層を備えた分類モジュールは、最終的な予測を生成する。
モデルはNTU RGB+D 120およびHMDB51データセットで評価され、くしゃみ、転倒、歩行、着座などのMRHAに焦点を当てている。
クロスオブジェクト評価では94.85%、NTU RGB+D 120では96.45%、HMDB51では89.00%である。
さらに、Raspberry PiとGSMモジュールを使用してIoT機能を統合し、TwiliosのSMSサービスを介してリアルタイムアラートを介護者と患者に配信する。
このスケーラブルで効率的なソリューションは、HMRとIoTのギャップを埋め、患者の監視を進め、医療結果を改善し、コストを削減します。
関連論文リスト
- COMFORT: A Continual Fine-Tuning Framework for Foundation Models Targeted at Consumer Healthcare [3.088223994180069]
COMFORTはTransformerベースの基盤モデルとWMSベースの疾患検出のギャップを埋めることを目的としている。
本稿では,トランスフォーマーに基づく基礎モデルを生理的信号の大規模データセット上で事前学習するための新しいアプローチを提案する。
次に、低ランク適応(LoRA)とその変種など、パラメータ効率のよい各種細調整法(PEFT)を用いて、モデルを微調整し、下流の様々な疾患検出タスクに適応させる。
論文 参考訳(メタデータ) (2024-09-14T22:24:52Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
慢性的な腰痛 (CLBP) は世界中の何百万もの患者を悩ませており、個人の健康や医療システムに対する経済的負担に大きな影響を及ぼす。
人工知能(AI)とディープラーニングは、リハビリ戦略を改善するために痛みに関連する行動を分析するための有望な道を提供するが、畳み込みニューラルネットワーク(CNN)を含む現在のモデルには限界がある。
我々は、モーションキャプチャーと表面筋電図センサからデータの空間的時間的相互作用をキャプチャする2Dフィルタを組み込んだ軽量CNNアーキテクチャであるhbox EmoL-SFANを紹介する。
論文 参考訳(メタデータ) (2024-06-07T12:01:37Z) - Empowering Healthcare through Privacy-Preserving MRI Analysis [3.6394715554048234]
本稿では,Ensemble-Based Federated Learning (EBFL)フレームワークを紹介する。
EBFLフレームワークは、機密性の高い患者データを共有することよりも、モデルの特徴を強調することによって、従来のアプローチから逸脱する。
グリオーマ,髄膜腫,下垂体,非腫瘍例などの脳腫瘍の分類において,有意な精度が得られた。
論文 参考訳(メタデータ) (2024-03-14T19:51:18Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
既存のモニタリングアプローチは、医療機器が複数の健康指標を同時に追跡するという前提で設計されている。
これは、その範囲内で関連するすべての健康値を報告し、過剰なリソース使用と外部データの収集をもたらす可能性があることを意味します。
最適なモニタリング性能とコスト効率のバランスをとるための動的アクティビティ・アウェアヘルスモニタリング戦略(DActAHM)を提案する。
論文 参考訳(メタデータ) (2024-01-19T16:26:35Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
ホワイトマターパーセレーション(White matter parcellation)は、トラクトグラフィーをクラスタまたは解剖学的に意味のあるトラクトに分類する。
ほとんどのパーセレーション法はディープホワイトマター(DWM)にフォーカスするが、その複雑さのため表面ホワイトマター(SWM)に対処する手法は少ない。
本稿では,2段階の深層学習に基づく新しいフレームワークであるSuperficial White Matter Analysis (SupWMA)を提案する。
論文 参考訳(メタデータ) (2022-07-18T23:07:53Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
複雑な値を持つガウスのメカニズムを導入し、その振る舞いは$f$-DP、$(varepsilon, delta)$-DP、R'enyi-DPで特徴づけられる。
本稿では,DPと互換性のある複雑なニューラルネットワークプリミティブを提案する。
実験では,実世界の課題に対して,DPを用いた複合数値ニューラルネットワークを訓練することで概念実証を行う。
論文 参考訳(メタデータ) (2021-10-07T14:03:00Z) - Early Mobility Recognition for Intensive Care Unit Patients Using
Accelerometers [3.772793938066986]
Intensive Care Unit (ICU) 患者に対するヒト活動認識, 早期移動認識の医療応用を提案する。
我々のシステムには、ICU患者からの加速度計に基づくデータ収集と、患者の早期モビリティを認識するAIモデルが含まれている。
その結果,モデル精度は77.78%から81.86%に向上し,モデル不安定性(標準偏差)は16.69%から6.92%に低下した。
論文 参考訳(メタデータ) (2021-06-28T22:59:31Z) - An adaptive cognitive sensor node for ECG monitoring in the Internet of
Medical Things [0.7646713951724011]
インターネット・オブ・メディカル・モノズ(IoMT)パラダイムは、複数の臨床試験や医療処置で主流になりつつある。
本研究では,資源制約型コンピューティングプラットフォームにおける認知データ解析アルゴリズムの実装について検討する。
コンボリューションニューラルネットワークを用いて心電図のトレースを分類する手法について検討した。
論文 参考訳(メタデータ) (2021-06-11T16:49:10Z) - Interpretable Deep Learning for the Remote Characterisation of
Ambulation in Multiple Sclerosis using Smartphones [3.5547766520356547]
スマートフォンの慣性センサデータに適用した深層畳み込みニューラルネットワーク (dcnn) は, 健常者とms群との区別が良好であった。
同様の大規模オープンソースデータセットからの転送学習(tl)モデルを提案した。
ブラックボックス」深層ネットワークの透明性の欠如は、臨床応用における深層学習の広く受け入れられる最大の障害の1つである。
論文 参考訳(メタデータ) (2021-03-16T16:15:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。