論文の概要: D3MES: Diffusion Transformer with multihead equivariant self-attention for 3D molecule generation
- arxiv url: http://arxiv.org/abs/2501.07077v1
- Date: Mon, 13 Jan 2025 06:16:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:21:08.797719
- Title: D3MES: Diffusion Transformer with multihead equivariant self-attention for 3D molecule generation
- Title(参考訳): D3MES:3次元分子生成のための多頭部同変自己アテンションを有する拡散変圧器
- Authors: Zhejun Zhang, Yuanping Chen, Shibing Chu,
- Abstract要約: 本稿では,拡散モデルDiffusion Transformerとマルチヘッド同型自己アテンションを組み合わせた3次元分子生成のための拡散モデルを提案する。
この方法は、2つの主要な課題に対処する: 水素原子を除去した後、分子の表現を学ぶことによって生成分子に水素原子を正しく取り付けること; 同時に複数のクラスにまたがる分子を生成できない既存のモデルの限界を克服すること。
- 参考スコア(独自算出の注目度): 1.3791394805787949
- License:
- Abstract: Understanding and predicting the diverse conformational states of molecules is crucial for advancing fields such as chemistry, material science, and drug development. Despite significant progress in generative models, accurately generating complex and biologically or material-relevant molecular structures remains a major challenge. In this work, we introduce a diffusion model for three-dimensional (3D) molecule generation that combines a classifiable diffusion model, Diffusion Transformer, with multihead equivariant self-attention. This method addresses two key challenges: correctly attaching hydrogen atoms in generated molecules through learning representations of molecules after hydrogen atoms are removed; and overcoming the limitations of existing models that cannot generate molecules across multiple classes simultaneously. The experimental results demonstrate that our model not only achieves state-of-the-art performance across several key metrics but also exhibits robustness and versatility, making it highly suitable for early-stage large-scale generation processes in molecular design, followed by validation and further screening to obtain molecules with specific properties.
- Abstract(参考訳): 分子の多様なコンフォメーション状態を理解し予測することは、化学、物質科学、薬物開発といった分野の発展に不可欠である。
生成モデルに大きな進歩があったにも拘わらず、複雑で生物学的または物質関連の分子構造を正確に生成することは大きな課題である。
本研究では,3次元分子生成のための拡散モデルを提案する。
この方法は、2つの主要な課題に対処する: 水素原子を除去した後、分子の表現を学ぶことによって生成分子に水素原子を正しく取り付けること; 同時に複数のクラスにまたがる分子を生成できない既存のモデルの限界を克服すること。
実験結果から,本モデルがいくつかの重要な指標をまたいだ最先端性能を達成するだけでなく,ロバスト性や汎用性も示し,分子設計の初期段階の大規模生成プロセスに高度に適合し,さらに検証や,特定の特性を持つ分子の探索を行うことができた。
関連論文リスト
- MolMiner: Transformer architecture for fragment-based autoregressive generation of molecular stories [7.366789601705544]
生成過程の化学的妥当性、解釈可能性、可変分子サイズへの柔軟性は、計算材料設計における生成モデルに残る課題の1つである。
本稿では,分子生成を離散的かつ解釈可能なステップの列に分解する自己回帰的手法を提案する。
この結果から,本モデルでは,提案した多目的目標目標に応じて,生成分布を効果的にバイアスすることができることがわかった。
論文 参考訳(メタデータ) (2024-11-10T22:00:55Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation [32.464905769094536]
既存の拡散に基づくデノボ3次元分子生成法は2つの大きな課題に直面している。
本研究では,グローバル空間関係を完全に抽出し,高品質な表現を学習するためのDual-Track Transformer Network(DTN)を提案する。
第2の課題は、エッジを直接潜伏空間に埋め込むのではなく、トレーニング期間中に結合の形成に介入する幾何学的識別損失(GFLoss)を設計することである。
論文 参考訳(メタデータ) (2024-01-05T07:29:21Z) - Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel
Approach to Generating Molecules with Desirable Properties [33.2976176283611]
本稿では,分子を望ましい性質で生成する新しい手法を提案する。
望ましい分子断片を得るため,我々は新しい電子効果に基づくフラグメンテーション法を開発した。
提案手法により生成する分子は, 従来のSOTAモデルより有効, 特異性, 新規性, Fr'echet ChemNet Distance (FCD), QED, PlogP を有することを示す。
論文 参考訳(メタデータ) (2023-10-05T11:43:21Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - MDM: Molecular Diffusion Model for 3D Molecule Generation [19.386468094571725]
既存の拡散に基づく3D分子生成法は、不満足な性能に悩まされる可能性がある。
原子間関係は分子の3次元点雲表現にはない。
提案したモデルは、条件付きタスクと条件付きタスクの両方において、既存のメソッドよりも大幅に優れている。
論文 参考訳(メタデータ) (2022-09-13T03:40:18Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
分子構築に階層的エージェントを用いるスケーラブルな3D設計のための新しいフレームワークを提案する。
様々な実験において、エネルギーのみを考慮に入れたエージェントが、100以上の原子を持つ分子を効率よく生成できることが示されている。
論文 参考訳(メタデータ) (2022-02-01T18:54:24Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Learning Latent Space Energy-Based Prior Model for Molecule Generation [59.875533935578375]
分子モデリングのためのSMILES表現を用いた潜時空間エネルギーに基づく先行モデルについて学習する。
本手法は,最先端モデルと競合する妥当性と特異性を持つ分子を生成することができる。
論文 参考訳(メタデータ) (2020-10-19T09:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。