論文の概要: A User's Guide to $\texttt{KSig}$: GPU-Accelerated Computation of the Signature Kernel
- arxiv url: http://arxiv.org/abs/2501.07145v1
- Date: Mon, 13 Jan 2025 09:11:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:28:37.212010
- Title: A User's Guide to $\texttt{KSig}$: GPU-Accelerated Computation of the Signature Kernel
- Title(参考訳): a user's Guide to $\texttt{KSig}$: GPU-Accelerated Computation of the Signature Kernel
- Authors: Csaba Tóth, Danilo Jr Dela Cruz, Harald Oberhauser,
- Abstract要約: シグネチャカーネルは、シーケンシャルおよびテンポラルデータのための正定カーネルである。
この章では、署名カーネルを演算するためのGPUアクセラレーションアルゴリズムを実装した、$textttKSig$、$textttScikit-Learn$互換Pythonパッケージについて短い紹介を行う。
- 参考スコア(独自算出の注目度): 12.111848705677138
- License:
- Abstract: The signature kernel is a positive definite kernel for sequential and temporal data that has become increasingly popular in machine learning applications due to powerful theoretical guarantees, strong empirical performance, and recently introduced various scalable variations. In this chapter, we give a short introduction to $\texttt{KSig}$, a $\texttt{Scikit-Learn}$ compatible Python package that implements various GPU-accelerated algorithms for computing signature kernels, and performing downstream learning tasks. We also introduce a new algorithm based on tensor sketches which gives strong performance compared to existing algorithms. The package is available at $\href{https://github.com/tgcsaba/ksig}{\texttt{https://github.com/tgcsaba/ksig}}$.
- Abstract(参考訳): シグネチャカーネルは、強力な理論的保証、強力な経験的性能、最近は様々なスケーラブルなバリエーションを導入し、機械学習アプリケーションでますます人気が高まっているシーケンシャルデータと時間データのための正の定型カーネルである。
この章では、シグネチャカーネルの計算や下流学習タスクの実行のために、GPUアクセラレーションアルゴリズムを実装した、$\textt{KSig}$、$\textt{Scikit-Learn}$互換Pythonパッケージの簡単な紹介を行う。
また,テンソルスケッチに基づく新しいアルゴリズムを導入し,既存のアルゴリズムと比較して高い性能を示した。
パッケージは$\href{https://github.com/tgcsaba/ksig}{\textt{https://github.com/tgcsaba/ksig}}$.comから入手できる。
関連論文リスト
- Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - Sub-quadratic Algorithms for Kernel Matrices via Kernel Density
Estimation [24.166833799353476]
カーネルグラフ上では$textitweighted edge sample$、カーネルグラフ上では$textitweighted walk$、行列で$textitweighted sample$からKernel Density Estimationへ効率よく還元する。
当社の削減は、それぞれのアプリケーションにおいて中心的な要素であり、それらが独立した関心事である可能性があると信じています。
論文 参考訳(メタデータ) (2022-12-01T16:42:56Z) - Near-Linear Time and Fixed-Parameter Tractable Algorithms for Tensor
Decompositions [51.19236668224547]
テンソルの低階近似について検討し,テンソルトレインとタッカー分解に着目した。
テンソル列車の分解には、小さなビクリテリアランクを持つビクリテリア$(1 + eps)$-approximationアルゴリズムと、O(q cdot nnz(A))$ランニングタイムを与える。
さらに、任意のグラフを持つテンソルネットワークにアルゴリズムを拡張します。
論文 参考訳(メタデータ) (2022-07-15T11:55:09Z) - Neural Networks can Learn Representations with Gradient Descent [68.95262816363288]
特定の状況下では、勾配降下によって訓練されたニューラルネットワークは、カーネルメソッドのように振る舞う。
実際には、ニューラルネットワークが関連するカーネルを強く上回ることが知られている。
論文 参考訳(メタデータ) (2022-06-30T09:24:02Z) - Giga-scale Kernel Matrix Vector Multiplication on GPU [9.106412307976067]
Kernel matrix vector multiplication (KMVM) は、カーネル文学から信号処理まで、機械学習と科学計算におけるユビキタスな演算である。
KMVMのスケーリング問題に対処するために,Faster-Fast and Free Memory Method(textF3$M)という新しい近似手法を提案する。
我々は、$textF3$Mで10億ポイントのKMVMを1分以内のハイエンドGPUで計算できることを示し、既存のCPU手法と比較して大幅に高速化された。
論文 参考訳(メタデータ) (2022-02-02T15:28:15Z) - Gaussian Process Bandit Optimization with Few Batches [49.896920704012395]
有限腕バンディットアルゴリズムにインスパイアされたバッチアルゴリズムを導入する。
O(log T)$ batches in time horizon $T$.sqrtTgamma_T)$ using $O(log T)$ batches in time horizon。
さらに,アルゴリズムの修正版を提案し,バッチ数によって後悔がどう影響するかを特徴付ける。
論文 参考訳(メタデータ) (2021-10-15T00:54:04Z) - Fast Sketching of Polynomial Kernels of Polynomial Degree [61.83993156683605]
他のカーネルはしばしばテイラー級数展開を通じてカーネルによって近似されるので、カーネルは特に重要である。
スケッチの最近の技術は、カーネルの$q$という難解な程度に実行時間に依存することを減らしている。
我々は、この実行時間を大幅に改善する新しいスケッチを、先頭の注文項で$q$への依存を取り除くことで提供します。
論文 参考訳(メタデータ) (2021-08-21T02:14:55Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
カーネル法は、非パラメトリック学習に対するエレガントで原則化されたアプローチを提供するが、今のところ大規模な問題ではほとんど利用できない。
最近の進歩は、最適化、数値線形代数、ランダム射影など、多くのアルゴリズム的アイデアの利点を示している。
ここでは、これらの取り組みをさらに進めて、GPUハードウェアを最大限に活用する解決器を開発し、テストする。
論文 参考訳(メタデータ) (2020-06-18T08:16:25Z) - Streaming Coresets for Symmetric Tensor Factorization [9.181791777532608]
ストリーミング環境でテンソルを効率的に分解する方法を示す。
本稿では,オンラインフィルタリングとカーネル化という2つの新しいアルゴリズム手法を紹介する。
単一トピックモデリング学習におけるアルゴリズムの適用例を示す。
論文 参考訳(メタデータ) (2020-06-01T19:55:34Z) - Kernel Operations on the GPU, with Autodiff, without Memory Overflows [5.669790037378094]
KeOpsライブラリは、数学的公式によってエントリが与えられるテンソルに対して、高速でメモリ効率のよいGPUサポートを提供する。
KeOpsは、カーネルおよび幾何学的アプリケーションのためのテンソル中心ライブラリの大きなボトルネックであるメモリ消費を緩和する。
KeOpsは、最適化されたC++/CUDAスキームと、Python(NumpyとPyTorch)、Matlab、Rのバインダーを組み合わせる。
論文 参考訳(メタデータ) (2020-03-27T08:54:10Z) - Signatory: differentiable computations of the signature and logsignature
transforms, on both CPU and GPU [13.503274710499971]
Signatoryは、シグネチャおよびログシグネチャ変換に関連する機能を計算し、実行するライブラリである。
これは、効率的な事前計算戦略など、以前のライブラリでは利用できない新機能を実装している。
ライブラリはC++のPythonラッパーとして動作し、PyTorchエコシステムと互換性がある。
論文 参考訳(メタデータ) (2020-01-03T03:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。