論文の概要: Implicit Neural Representations for Registration of Left Ventricle Myocardium During a Cardiac Cycle
- arxiv url: http://arxiv.org/abs/2501.07248v1
- Date: Mon, 13 Jan 2025 11:58:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:22:26.648611
- Title: Implicit Neural Representations for Registration of Left Ventricle Myocardium During a Cardiac Cycle
- Title(参考訳): 心循環中の左室心筋登録におけるインプシット神経表現
- Authors: Mathias Micheelsen Lowes, Jonas Jalili Pedersen, Bjørn S. Hansen, Klaus Fuglsang Kofoed, Maxime Sermesant, Rasmus R. Paulsen,
- Abstract要約: 本研究は、心電図(CT)におけるDIR用INRの使用を拡大し、LVmyoの登録に焦点をあてた。
LVmyoの周辺での登録精度を高めるため、CTフレームからLVmyoの符号付き距離フィールドとHounsfield Unit値を統合する。
我々のフレームワークは高い登録精度を示し、LVmyo運動のさらなる解析を容易にする時間的登録のための堅牢な方法を提供する。
- 参考スコア(独自算出の注目度): 0.6630677888308644
- License:
- Abstract: Understanding the movement of the left ventricle myocardium (LVmyo) during the cardiac cycle is essential for assessing cardiac function. One way to model this movement is through a series of deformable image registrations (DIRs) of the LVmyo. Traditional deep learning methods for DIRs, such as those based on convolutional neural networks, often require substantial memory and computational resources. In contrast, implicit neural representations (INRs) offer an efficient approach by operating on any number of continuous points. This study extends the use of INRs for DIR to cardiac computed tomography (CT), focusing on LVmyo registration. To enhance the precision of the registration around the LVmyo, we incorporate the signed distance field of the LVmyo with the Hounsfield Unit values from the CT frames. This guides the registration of the LVmyo, while keeping the tissue information from the CT frames. Our framework demonstrates high registration accuracy and provides a robust method for temporal registration that facilitates further analysis of LVmyo motion.
- Abstract(参考訳): 心機能評価には左心室心筋(LVmyo)の動きを理解することが不可欠である。
この運動をモデル化する方法の1つは、LVmyoの一連の変形可能な画像登録(DIR)である。
畳み込みニューラルネットワークのような従来のDIRのディープラーニング手法は、しばしばかなりのメモリと計算資源を必要とする。
対照的に、暗黙的神経表現(INR)は、任意の数の連続点を操作することによって効率的なアプローチを提供する。
本研究は、心電図(CT)におけるDIR用INRの使用を拡大し、LVmyo registrationに焦点を当てた。
LVmyoの周辺での登録精度を高めるため、CTフレームからLVmyoの符号付き距離フィールドとHounsfield Unit値を統合する。
これは、組織情報をCTフレームから保持しながら、LVmyoの登録をガイドする。
我々のフレームワークは高い登録精度を示し、LVmyo運動のさらなる解析を容易にする時間的登録のための堅牢な方法を提供する。
関連論文リスト
- Lost in Tracking: Uncertainty-guided Cardiac Cine MRI Segmentation at Right Ventricle Base [6.124743898202368]
本稿では,CMRセグメンテーションにおける未解決問題,特にRVベースに対処することを提案する。
本稿では,時間的アンコヒーレンスを利用して平面間動きの発生時にセグメンテーションを通知する新しいデュアルエンコーダU-Netアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-04T11:14:31Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
本稿では,CU-Reg と呼ばれる,軽量でエンドツーエンドなカード・ツー・エンド・超音波フレーム・ツー・ボリューム・レジストレーション・ネットワークを提案する。
2次元スパースと3次元濃密な特徴の相互作用を増強するために,心内膜急速ガイドによる解剖学的手がかりを用い,その後,強化された特徴のボクセル的局所グロバル集約を行った。
論文 参考訳(メタデータ) (2024-06-20T17:47:30Z) - Deep Learning for Automatic Strain Quantification in Arrhythmogenic
Right Ventricular Cardiomyopathy [0.0]
CMRIによる心臓運動の定量化は、不整脈性右室心筋症(ARVC)診断の不可欠な部分である。
Inlicit Neural Representations (INR) とディープラーニングを用いた心臓運動自動評価法を開発した。
以上の結果から,スライス間アライメントと超解像ボリュームの生成と,2つの心像の同時解析が相まって,登録性能が向上することが示唆された。
論文 参考訳(メタデータ) (2023-11-24T12:55:36Z) - Semantic-aware Temporal Channel-wise Attention for Cardiac Function
Assessment [69.02116920364311]
既存のビデオベースの手法では、左室領域や運動による左室の変化にはあまり注意を払わない。
本稿では,左室分割課題を伴う半教師付き補助学習パラダイムを提案し,左室領域の表現学習に寄与する。
提案手法は,0.22 MAE,0.26 RMSE,1.9%$R2$の改善により,スタンフォードデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-09T05:57:01Z) - SimLVSeg: Simplifying Left Ventricular Segmentation in 2D+Time Echocardiograms with Self- and Weakly-Supervised Learning [0.8672882547905405]
狭義の心エコービデオから一貫した左室(LV)セグメンテーションを行うビデオベースネットワークであるSimLVSegを開発した。
SimLVSegは、時間的マスキングによる自己教師付き事前トレーニングと、スパースアノテーションからのLVセグメンテーションに適した弱い教師付き学習で構成されている。
我々は、SimLVSegが、最大の2D+時間心エコー画像データセットで93.32%のダイススコアを達成して、最先端のソリューションをいかに優れているかを実証する。
論文 参考訳(メタデータ) (2023-09-30T18:13:41Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
多くの深層学習に基づく登録法は、変形場は画像領域の至る所で滑らかで連続的であると仮定する。
本研究では,この課題に対処するために,不連続かつ局所的に滑らかな変形場を確保するための新しい不連続保存画像登録手法を提案する。
入力画像の構造的相関を学習するために,ネットワークのセグメンテーション成分にコアテンションブロックを提案する。
大規模心磁気共鳴画像系列を用いた物体内時間画像登録の課題について検討した。
論文 参考訳(メタデータ) (2022-11-24T23:45:01Z) - DeepRGVP: A Novel Microstructure-Informed Supervised Contrastive
Learning Framework for Automated Identification Of The Retinogeniculate
Pathway Using dMRI Tractography [49.36718605738193]
網膜発生経路(Retinogeniculate pathway、RGVP)は、網膜から外側の原核への視覚情報を伝達する役割を持つ。
我々は,dMRIトラクトログラフィーデータからRGVPを高速かつ正確な同定を可能にする,最初のディープラーニングフレームワークであるDeepRGVPを提案する。
論文 参考訳(メタデータ) (2022-11-15T13:14:49Z) - CNN-based Cardiac Motion Extraction to Generate Deformable Geometric
Left Ventricle Myocardial Models from Cine MRI [0.0]
Cine心MR画像からLV心筋の患者特異的幾何モデルの開発のための枠組みを提案する。
我々はvoxelmorph-based convolutional neural network (cnn) を用いて、心周期の次のフレームにエンドダイアゾールフレームの等表面メッシュとボリュームメッシュを伝搬する。
論文 参考訳(メタデータ) (2021-03-30T21:34:29Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。