論文の概要: Generating Poisoning Attacks against Ridge Regression Models with Categorical Features
- arxiv url: http://arxiv.org/abs/2501.07275v1
- Date: Mon, 13 Jan 2025 12:40:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:21:07.011526
- Title: Generating Poisoning Attacks against Ridge Regression Models with Categorical Features
- Title(参考訳): 分類的特徴を持つ尾根回帰モデルに対する中毒攻撃の発生
- Authors: Monse Guedes-Ayala, Lars Schewe, Zeynep Suvak, Miguel Anjos,
- Abstract要約: 機械学習(ML)モデルは、大規模なデータセットから情報を抽出する非常に強力なツールになっている。
MLモデルは外部からの攻撃に弱いため、期待するタスクを過小評価したり、逸脱させたりすることができる。
本稿では,区分的特徴を明示する数値的カテゴリー的特徴の両方を含むリッジ回帰モデルに対する強力な攻撃を生成することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine Learning (ML) models have become a very powerful tool to extract information from large datasets and use it to make accurate predictions and automated decisions. However, ML models can be vulnerable to external attacks, causing them to underperform or deviate from their expected tasks. One way to attack ML models is by injecting malicious data to mislead the algorithm during the training phase, which is referred to as a poisoning attack. We can prepare for such situations by designing anticipated attacks, which are later used for creating and testing defence strategies. In this paper, we propose an algorithm to generate strong poisoning attacks for a ridge regression model containing both numerical and categorical features that explicitly models and poisons categorical features. We model categorical features as SOS-1 sets and formulate the problem of designing poisoning attacks as a bilevel optimization problem that is nonconvex mixed-integer in the upper-level and unconstrained convex quadratic in the lower-level. We present the mathematical formulation of the problem, introduce a single-level reformulation based on the Karush-Kuhn-Tucker (KKT) conditions of the lower level, find bounds for the lower-level variables to accelerate solver performance, and propose a new algorithm to poison categorical features. Numerical experiments show that our method improves the mean squared error of all datasets compared to the previous benchmark in the literature.
- Abstract(参考訳): 機械学習(ML)モデルは、大規模なデータセットから情報を抽出し、正確な予測と自動決定を行うための非常に強力なツールになっています。
しかし、MLモデルは外部からの攻撃に弱いため、期待するタスクを過小評価したり、逸脱させたりすることができる。
MLモデルを攻撃する方法の1つは、トレーニングフェーズ中にアルゴリズムを誤誘導するために悪意のあるデータを注入することである。
我々は、後に防衛戦略の作成とテストに使用される予定の攻撃を設計することで、そのような状況に備えることができる。
本稿では, 数値的特徴と分類的特徴の両方を含む尾根回帰モデルに対して, 強毒攻撃を発生させるアルゴリズムを提案する。
我々は、SOS-1の集合として分類的特徴をモデル化し、上層では非凸混合整数であり、下層では非拘束凸2次である二レベル最適化問題として毒素攻撃を設計する問題を定式化する。
問題の数学的定式化、低レベルのカルシュ・クーン・タッカー(KKT)条件に基づく単一レベル再構成の導入、解法性能を加速する下位レベルの変数のバウンダリを見つけること、および分類的特徴を有毒にする新しいアルゴリズムを提案する。
数値実験により,本手法は過去の文献のベンチマークと比較すると,全てのデータセットの平均2乗誤差を改善することが示された。
関連論文リスト
- Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Hyperparameter Learning under Data Poisoning: Analysis of the Influence
of Regularization via Multiobjective Bilevel Optimization [3.3181276611945263]
機械学習(ML)アルゴリズムは、アルゴリズムのパフォーマンスを意図的に劣化させるためにトレーニングデータの一部が操作される、中毒攻撃に対して脆弱である。
最適な攻撃は、二段階最適化問題として定式化することができ、最悪のシナリオでその堅牢性を評価するのに役立つ。
論文 参考訳(メタデータ) (2023-06-02T15:21:05Z) - Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning
Attacks [31.339252233416477]
対象パラメータに対するデータ中毒攻撃の本質的な限界を探索するための技術ツールとして,モデル中毒の到達可能性の概念を紹介した。
我々は、一般的なMLモデルの中で驚くべき位相遷移現象を確立し、定量化するために、容易に計算可能なしきい値を得る。
我々の研究は, 有毒比がもたらす重要な役割を強調し, データ中毒における既存の経験的結果, 攻撃, 緩和戦略に関する新たな知見を隠蔽する。
論文 参考訳(メタデータ) (2023-03-07T01:55:26Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
本研究では,展開段階におけるモデルパラメータを変更する新たな攻撃パラダイムについて検討する。
有効性とステルスネスの目標を考慮し、ビットフリップに基づく重み攻撃を行うための一般的な定式化を提供する。
SSA(Single sample attack)とTSA(Singr sample attack)の2例を報告した。
論文 参考訳(メタデータ) (2022-07-25T03:24:58Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Regularization Can Help Mitigate Poisoning Attacks... with the Right
Hyperparameters [1.8570591025615453]
機械学習アルゴリズムは、トレーニングデータの一部を操作してアルゴリズムのパフォーマンスを低下させる、中毒攻撃に対して脆弱である。
通常、正規化ハイパーパラメータが一定であると仮定する現在のアプローチは、アルゴリズムの堅牢性に対する過度に悲観的な見方をもたらすことを示す。
本稿では,攻撃が過度パラメータに与える影響を考慮し,エフェミニマックスの双レベル最適化問題としてモデル化した新たな最適攻撃定式化を提案する。
論文 参考訳(メタデータ) (2021-05-23T14:34:47Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
我々は,悪質な目的で展開段階におけるモデルパラメータを修飾する新しい攻撃パラダイムについて検討する。
私たちのゴールは、特定のサンプルをサンプル修正なしでターゲットクラスに誤分類することです。
整数プログラミングにおける最新の手法を利用することで、このBIP問題を連続最適化問題として等価に再構成する。
論文 参考訳(メタデータ) (2021-02-21T03:13:27Z) - Adversarial Poisoning Attacks and Defense for General Multi-Class Models
Based On Synthetic Reduced Nearest Neighbors [14.968442560499753]
最先端の機械学習モデルは、データ中毒攻撃に弱い。
本論文では,データのマルチモダリティに基づく新しいモデルフリーラベルフリップ攻撃を提案する。
第二に、SRNN(Synthetic reduced Nearest Neighbor)モデルに基づく新しい防御技術を提案する。
論文 参考訳(メタデータ) (2021-02-11T06:55:40Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Regularisation Can Mitigate Poisoning Attacks: A Novel Analysis Based on
Multiobjective Bilevel Optimisation [3.3181276611945263]
機械学習(ML)アルゴリズムは、アルゴリズムのパフォーマンスを意図的に劣化させるためにトレーニングデータの一部が操作される、中毒攻撃に対して脆弱である。
2レベル問題として定式化できる最適毒殺攻撃は、最悪のシナリオにおける学習アルゴリズムの堅牢性を評価するのに役立つ。
このアプローチはアルゴリズムの堅牢性に対する過度に悲観的な見方をもたらすことを示す。
論文 参考訳(メタデータ) (2020-02-28T19:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。