Code and Pixels: Multi-Modal Contrastive Pre-training for Enhanced Tabular Data Analysis
- URL: http://arxiv.org/abs/2501.07304v1
- Date: Mon, 13 Jan 2025 13:12:18 GMT
- Title: Code and Pixels: Multi-Modal Contrastive Pre-training for Enhanced Tabular Data Analysis
- Authors: Kankana Roy, Lars Krämer, Sebastian Domaschke, Malik Haris, Roland Aydin, Fabian Isensee, Martin Held,
- Abstract summary: We present Multi-task Contrastive Masked Tabular Modeling (MT-CMTM)
We employ a dual strategy combining contrastive learning with masked tabular modeling, optimizing the synergy between these data modalities.
Central to our approach is a 1D Convolutional Neural Network with residual connections and an attention mechanism (1D-ResNet-CBAM)
- Score: 3.640521552987694
- License:
- Abstract: Learning from tabular data is of paramount importance, as it complements the conventional analysis of image and video data by providing a rich source of structured information that is often critical for comprehensive understanding and decision-making processes. We present Multi-task Contrastive Masked Tabular Modeling (MT-CMTM), a novel method aiming to enhance tabular models by leveraging the correlation between tabular data and corresponding images. MT-CMTM employs a dual strategy combining contrastive learning with masked tabular modeling, optimizing the synergy between these data modalities. Central to our approach is a 1D Convolutional Neural Network with residual connections and an attention mechanism (1D-ResNet-CBAM), designed to efficiently process tabular data without relying on images. This enables MT-CMTM to handle purely tabular data for downstream tasks, eliminating the need for potentially costly image acquisition and processing. We evaluated MT-CMTM on the DVM car dataset, which is uniquely suited for this particular scenario, and the newly developed HIPMP dataset, which connects membrane fabrication parameters with image data. Our MT-CMTM model outperforms the proposed tabular 1D-ResNet-CBAM, which is trained from scratch, achieving a relative 1.48% improvement in relative MSE on HIPMP and a 2.38% increase in absolute accuracy on DVM. These results demonstrate MT-CMTM's robustness and its potential to advance the field of multi-modal learning.
Related papers
- MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
We propose a novel Multi-Modal Auto-Regressive (MMAR) probabilistic modeling framework.
Unlike discretization line of method, MMAR takes in continuous-valued image tokens to avoid information loss.
We show that MMAR demonstrates much more superior performance than other joint multi-modal models.
arXiv Detail & Related papers (2024-10-14T17:57:18Z) - Images in Discrete Choice Modeling: Addressing Data Isomorphism in
Multi-Modality Inputs [77.54052164713394]
This paper explores the intersection of Discrete Choice Modeling (DCM) and machine learning.
We investigate the consequences of embedding high-dimensional image data that shares isomorphic information with traditional tabular inputs within a DCM framework.
arXiv Detail & Related papers (2023-12-22T14:33:54Z) - Enhancing CT Image synthesis from multi-modal MRI data based on a
multi-task neural network framework [16.864720020158906]
We propose a versatile multi-task neural network framework, based on an enhanced Transformer U-Net architecture.
We decompose the traditional problem of synthesizing CT images into distinct subtasks.
To enhance the framework's versatility in handling multi-modal data, we expand the model with multiple image channels.
arXiv Detail & Related papers (2023-12-13T18:22:38Z) - Weakly supervised cross-modal learning in high-content screening [0.0]
We introduce a novel approach to learn cross-modal representations between image data and molecular representations for drug discovery.
We propose EMM and IMM, two innovative loss functions built on top of CLIP that leverage weak supervision.
We also present a preprocessing method for the JUMP-CP dataset that effectively reduce the required space from 85Tb to a mere usable 7Tb size.
arXiv Detail & Related papers (2023-11-08T13:35:08Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - E2TIMT: Efficient and Effective Modal Adapter for Text Image Machine
Translation [40.62692548291319]
Text image machine translation (TIMT) aims to translate texts embedded in images from one source language to another target language.
Existing methods, both two-stage cascade and one-stage end-to-end architectures, suffer from different issues.
We propose an end-to-end TIMT model fully making use of the knowledge from existing OCR and MT datasets.
arXiv Detail & Related papers (2023-05-09T04:25:52Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones.
Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model.
We propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis.
arXiv Detail & Related papers (2022-12-02T11:40:40Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.