Localization-Aware Multi-Scale Representation Learning for Repetitive Action Counting
- URL: http://arxiv.org/abs/2501.07312v1
- Date: Mon, 13 Jan 2025 13:24:41 GMT
- Title: Localization-Aware Multi-Scale Representation Learning for Repetitive Action Counting
- Authors: Sujia Wang, Xiangwei Shen, Yansong Tang, Xin Dong, Wenjia Geng, Lei Chen,
- Abstract summary: Repetitive action counting (RAC) aims to estimate the number of class-agnostic action occurrences in a video without exemplars.
Most current RAC methods rely on a raw frame-to-frame similarity representation for period prediction.
We introduce a foreground localization objective into similarity representation learning to obtain more robust and efficient video features.
- Score: 19.546761142820376
- License:
- Abstract: Repetitive action counting (RAC) aims to estimate the number of class-agnostic action occurrences in a video without exemplars. Most current RAC methods rely on a raw frame-to-frame similarity representation for period prediction. However, this approach can be significantly disrupted by common noise such as action interruptions and inconsistencies, leading to sub-optimal counting performance in realistic scenarios. In this paper, we introduce a foreground localization optimization objective into similarity representation learning to obtain more robust and efficient video features. We propose a Localization-Aware Multi-Scale Representation Learning (LMRL) framework. Specifically, we apply a Multi-Scale Period-Aware Representation (MPR) with a scale-specific design to accommodate various action frequencies and learn more flexible temporal correlations. Furthermore, we introduce the Repetition Foreground Localization (RFL) method, which enhances the representation by coarsely identifying periodic actions and incorporating global semantic information. These two modules can be jointly optimized, resulting in a more discerning periodic action representation. Our approach significantly reduces the impact of noise, thereby improving counting accuracy. Additionally, the framework is designed to be scalable and adaptable to different types of video content. Experimental results on the RepCountA and UCFRep datasets demonstrate that our proposed method effectively handles repetitive action counting.
Related papers
- USDRL: Unified Skeleton-Based Dense Representation Learning with Multi-Grained Feature Decorrelation [24.90512145836643]
We introduce a Unified Skeleton-based Dense Representation Learning framework based on feature decorrelation.
We show that our approach significantly outperforms the current state-of-the-art (SOTA) approaches.
arXiv Detail & Related papers (2024-12-12T12:20:27Z) - FMI-TAL: Few-shot Multiple Instances Temporal Action Localization by Probability Distribution Learning and Interval Cluster Refinement [2.261014973523156]
We propose a novel solution involving a spatial-channel relation transformer with probability learning and cluster refinement.
This method can accurately identify the start and end boundaries of actions in the query video.
Our model achieves competitive performance through meticulous experimentation utilizing the benchmark datasets ActivityNet1.3 and THUMOS14.
arXiv Detail & Related papers (2024-08-25T08:17:25Z) - Frame Order Matters: A Temporal Sequence-Aware Model for Few-Shot Action Recognition [14.97527336050901]
We propose a novel Temporal Sequence-Aware Model (TSAM) for few-shot action recognition (FSAR)
It incorporates a sequential perceiver adapter into the pre-training framework, to integrate both the spatial information and the sequential temporal dynamics into the feature embeddings.
Experimental results on five FSAR datasets demonstrate that our method set a new benchmark, beating the second-best competitors with large margins.
arXiv Detail & Related papers (2024-08-22T15:13:27Z) - An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - Efficient Action Counting with Dynamic Queries [31.833468477101604]
We introduce a novel approach that employs an action query representation to localize repeated action cycles with linear computational complexity.
Unlike static action queries, this approach dynamically embeds video features into action queries, offering a more flexible and generalizable representation.
Our method significantly outperforms previous works, particularly in terms of long video sequences, unseen actions, and actions at various speeds.
arXiv Detail & Related papers (2024-03-03T15:43:11Z) - Semantics-Aware Dynamic Localization and Refinement for Referring Image
Segmentation [102.25240608024063]
Referring image segments an image from a language expression.
We develop an algorithm that shifts from being localization-centric to segmentation-language.
Compared to its counterparts, our method is more versatile yet effective.
arXiv Detail & Related papers (2023-03-11T08:42:40Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - EAN: Event Adaptive Network for Enhanced Action Recognition [66.81780707955852]
We propose a unified action recognition framework to investigate the dynamic nature of video content.
First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events.
Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer.
arXiv Detail & Related papers (2021-07-22T15:57:18Z) - Learning Salient Boundary Feature for Anchor-free Temporal Action
Localization [81.55295042558409]
Temporal action localization is an important yet challenging task in video understanding.
We propose the first purely anchor-free temporal localization method.
Our model includes (i) an end-to-end trainable basic predictor, (ii) a saliency-based refinement module, and (iii) several consistency constraints.
arXiv Detail & Related papers (2021-03-24T12:28:32Z) - MuCAN: Multi-Correspondence Aggregation Network for Video
Super-Resolution [63.02785017714131]
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame.
Inter- and intra-frames are the key sources for exploiting temporal and spatial information.
We build an effective multi-correspondence aggregation network (MuCAN) for VSR.
arXiv Detail & Related papers (2020-07-23T05:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.