Equi-Euler GraphNet: An Equivariant, Temporal-Dynamics Informed Graph Neural Network for Dual Force and Trajectory Prediction in Multi-Body Systems
- URL: http://arxiv.org/abs/2504.13768v3
- Date: Fri, 25 Apr 2025 15:07:14 GMT
- Title: Equi-Euler GraphNet: An Equivariant, Temporal-Dynamics Informed Graph Neural Network for Dual Force and Trajectory Prediction in Multi-Body Systems
- Authors: Vinay Sharma, Rémi Tanguy Oddon, Pietro Tesini, Jens Ravesloot, Cees Taal, Olga Fink,
- Abstract summary: We propose Equi-Euler GraphNet, a physics-informed graph neural network (GNN) that simultaneously predicts internal forces and global trajectories in multi-body systems.<n> Equi-Euler GraphNet generalizes beyond the training distribution, accurately predicting loads and trajectories under unseen speeds, loads, and configurations.<n>It outperforms state-of-the-art GNNs focused on trajectory prediction, delivering stable rollouts over thousands of time steps with minimal error accumulation.
- Score: 5.442686600296734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate real-time modeling of multi-body dynamical systems is essential for enabling digital twin applications across industries. While many data-driven approaches aim to learn system dynamics, jointly predicting internal loads and system trajectories remains a key challenge. This dual prediction is especially important for fault detection and predictive maintenance, where internal loads-such as contact forces-act as early indicators of faults, reflecting wear or misalignment before affecting motion. These forces also serve as inputs to degradation models (e.g., crack growth), enabling damage prediction and remaining useful life estimation. We propose Equi-Euler GraphNet, a physics-informed graph neural network (GNN) that simultaneously predicts internal forces and global trajectories in multi-body systems. In this mesh-free framework, nodes represent system components and edges encode interactions. Equi-Euler GraphNet introduces two inductive biases: (1) an equivariant message-passing scheme, interpreting edge messages as interaction forces consistent under Euclidean transformations; and (2) a temporal-aware iterative node update mechanism, based on Euler integration, to capture influence of distant interactions over time. Tailored for cylindrical roller bearings, it decouples ring dynamics from constrained motion of rolling elements. Trained on high-fidelity multiphysics simulations, Equi-Euler GraphNet generalizes beyond the training distribution, accurately predicting loads and trajectories under unseen speeds, loads, and configurations. It outperforms state-of-the-art GNNs focused on trajectory prediction, delivering stable rollouts over thousands of time steps with minimal error accumulation. Achieving up to a 200x speedup over conventional solvers while maintaining comparable accuracy, it serves as an efficient reduced-order model for digital twins, design, and maintenance.
Related papers
- Dynami-CAL GraphNet: A Physics-Informed Graph Neural Network Conserving Linear and Angular Momentum for Dynamical Systems [7.59660604072964]
Dynami-CAL GraphNet offers accurate, interpretable, and real-time modeling of complex multi-body dynamical systems.<n>It provides physically consistent and scalable predictions that adhere to fundamental conservation laws.<n>It enables the inference of forces and moments while efficiently handling heterogeneous interactions and external forces.
arXiv Detail & Related papers (2025-01-13T14:41:56Z) - Attention-based Dynamic Graph Convolutional Recurrent Neural Network for
Traffic Flow Prediction in Highway Transportation [0.6650227510403052]
Attention-based Dynamic Graph Convolutional Recurrent Neural Network (ADG-N) is proposed to improve traffic flow prediction in highway transportation.
A dedicated gated kernel emphasizing highly relative nodes is introduced on complete graphs to reduce overfitting for graph convolution operations.
arXiv Detail & Related papers (2023-09-13T13:57:21Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - E($3$) Equivariant Graph Neural Networks for Particle-Based Fluid
Mechanics [2.1401663582288144]
We demonstrate that equivariant graph neural networks have the potential to learn more accurate dynamic-interaction models.
We benchmark two well-studied fluid flow systems, namely the 3D decaying Taylor-Green vortex and the 3D reverse Poiseuille flow.
arXiv Detail & Related papers (2023-03-31T21:56:35Z) - Predicting fluid-structure interaction with graph neural networks [13.567118450260178]
We present a rotation equivariant, quasi-monolithic graph neural network framework for the reduced-order modeling of fluid-structure interaction systems.
A finite element-inspired hypergraph neural network is employed to predict the evolution of the fluid state based on the state of the whole system.
The proposed framework tracks the interface description and provides stable and accurate system state predictions during roll-out for at least 2000 time steps.
arXiv Detail & Related papers (2022-10-09T07:42:23Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Equivariant Graph Mechanics Networks with Constraints [83.38709956935095]
We propose Graph Mechanics Network (GMN) which is efficient, equivariant and constraint-aware.
GMN represents, by generalized coordinates, the forward kinematics information (positions and velocities) of a structural object.
Extensive experiments support the advantages of GMN compared to the state-of-the-art GNNs in terms of prediction accuracy, constraint satisfaction and data efficiency.
arXiv Detail & Related papers (2022-03-12T14:22:14Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - Simulating Continuum Mechanics with Multi-Scale Graph Neural Networks [0.17205106391379021]
We introduce MultiScaleGNN, a network multi-scale neural graph model for learning to infer unsteady mechanics.
We show that the proposed model can generalise from uniform advection fields to high-gradient fields on complex domains at test time and infer long-term Navier-Stokes solutions within a range of Reynolds numbers.
arXiv Detail & Related papers (2021-06-09T08:37:38Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.