Multivariate Time Series Anomaly Detection by Capturing Coarse-Grained Intra- and Inter-Variate Dependencies
- URL: http://arxiv.org/abs/2501.16364v1
- Date: Wed, 22 Jan 2025 05:53:12 GMT
- Title: Multivariate Time Series Anomaly Detection by Capturing Coarse-Grained Intra- and Inter-Variate Dependencies
- Authors: Yongzheng Xie, Hongyu Zhang, Muhammad Ali Babar,
- Abstract summary: We introduce MtsCID, a novel semi-supervised multivariate time series anomaly detection method.
We show that MtsCID achieves performance comparable or superior to state-of-the-art benchmark methods.
- Score: 14.784236273395017
- License:
- Abstract: Multivariate time series anomaly detection is essential for failure management in web application operations, as it directly influences the effectiveness and timeliness of implementing remedial or preventive measures. This task is often framed as a semi-supervised learning problem, where only normal data are available for model training, primarily due to the labor-intensive nature of data labeling and the scarcity of anomalous data. Existing semi-supervised methods often detect anomalies by capturing intra-variate temporal dependencies and/or inter-variate relationships to learn normal patterns, flagging timestamps that deviate from these patterns as anomalies. However, these approaches often fail to capture salient intra-variate temporal and inter-variate dependencies in time series due to their focus on excessively fine granularity, leading to suboptimal performance. In this study, we introduce MtsCID, a novel semi-supervised multivariate time series anomaly detection method. MtsCID employs a dual network architecture: one network operates on the attention maps of multi-scale intra-variate patches for coarse-grained temporal dependency learning, while the other works on variates to capture coarse-grained inter-variate relationships through convolution and interaction with sinusoidal prototypes. This design enhances the ability to capture the patterns from both intra-variate temporal dependencies and inter-variate relationships, resulting in improved performance. Extensive experiments across seven widely used datasets demonstrate that MtsCID achieves performance comparable or superior to state-of-the-art benchmark methods.
Related papers
- MTSCI: A Conditional Diffusion Model for Multivariate Time Series Consistent Imputation [41.681869408967586]
Key research question is how to ensure imputation consistency, i.e., intra-consistency between observed and imputed values.
Previous methods rely solely on the inductive bias of the imputation targets to guide the learning process.
arXiv Detail & Related papers (2024-08-11T10:24:53Z) - DACR: Distribution-Augmented Contrastive Reconstruction for Time-Series
Anomaly Detection [12.3866167448478]
Anomaly detection in time-series data is crucial for identifying faults, failures, threats, and outliers across a range of applications.
Recently, deep learning techniques have been applied to this topic, but they often struggle in real-world scenarios.
We propose Distribution-Augmented Contrastive Reconstruction (DACR) to tackle these challenges.
arXiv Detail & Related papers (2024-01-20T16:56:52Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Entropy Causal Graphs for Multivariate Time Series Anomaly Detection [7.402342914903391]
This work proposes a novel framework called CGAD, an entropy Causal Graph for multivariate time series Anomaly Detection.
CGAD utilizes transfer entropy to construct graph structures that unveil the underlying causal relationships among time series data.
CGAD outperforms state-of-the-art methods on real-world datasets with a 15% average improvement.
arXiv Detail & Related papers (2023-12-15T01:35:00Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFI builds multivariate feature interaction graph automatically and uses the graph convolutional neural network to achieve high-order feature interactions.
Experiments on three publicly available datasets demonstrate the superiority of our framework compared with state-of-the-art approaches.
arXiv Detail & Related papers (2021-06-11T04:57:03Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.