Pairwise Comparisons without Stochastic Transitivity: Model, Theory and Applications
- URL: http://arxiv.org/abs/2501.07437v1
- Date: Mon, 13 Jan 2025 16:05:41 GMT
- Title: Pairwise Comparisons without Stochastic Transitivity: Model, Theory and Applications
- Authors: Sze Ming Lee, Yunxiao Chen,
- Abstract summary: We propose a family of statistical models for pairwise comparison data without a transitivity assumption.
The proposed estimator achieves the minimax-rate optimality, which adapts effectively to the sparsity level of the data.
- Score: 2.4938353164011446
- License:
- Abstract: Most statistical models for pairwise comparisons, including the Bradley-Terry (BT) and Thurstone models and many extensions, make a relatively strong assumption of stochastic transitivity. This assumption imposes the existence of an unobserved global ranking among all the players/teams/items and monotone constraints on the comparison probabilities implied by the global ranking. However, the stochastic transitivity assumption does not hold in many real-world scenarios of pairwise comparisons, especially games involving multiple skills or strategies. As a result, models relying on this assumption can have suboptimal predictive performance. In this paper, we propose a general family of statistical models for pairwise comparison data without a stochastic transitivity assumption, substantially extending the BT and Thurstone models. In this model, the pairwise probabilities are determined by a (approximately) low-dimensional skew-symmetric matrix. Likelihood-based estimation methods and computational algorithms are developed, which allow for sparse data with only a small proportion of observed pairs. Theoretical analysis shows that the proposed estimator achieves minimax-rate optimality, which adapts effectively to the sparsity level of the data. The spectral theory for skew-symmetric matrices plays a crucial role in the implementation and theoretical analysis. The proposed method's superiority against the BT model, along with its broad applicability across diverse scenarios, is further supported by simulations and real data analysis.
Related papers
- MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions [22.765095010254118]
The goal of this paper is to develop distributionally robust optimization (DRO) estimators, specifically for multidimensional Extreme Value Theory (EVT) statistics.
In order to mitigate over-conservative estimates while enhancing out-of-sample performance, we study DRO estimators informed by semi-parametric max-stable constraints in the space of point processes.
Both approaches are validated using synthetically generated data, recovering prescribed characteristics, and verifying the efficacy of the proposed techniques.
arXiv Detail & Related papers (2024-07-31T19:45:27Z) - Multivariate Stochastic Dominance via Optimal Transport and Applications to Models Benchmarking [21.23500484100963]
We introduce a statistic that assesses almost dominance under the framework of Optimal Transport with a smooth cost.
We also propose a hypothesis testing framework as well as an efficient implementation using the Sinkhorn algorithm.
We showcase our method in comparing and benchmarking Large Language Models that are evaluated on multiple metrics.
arXiv Detail & Related papers (2024-06-10T16:14:50Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Statistical inference for pairwise comparison models [5.487882744996216]
This paper establishes a near-optimal normality for the maximum likelihood in a broad class of pairwise comparison models.
The key idea lies in identifying the Fisher information matrix as a weighted graph Laplacian, which can be studied via a meticulous spectral analysis.
arXiv Detail & Related papers (2024-01-16T16:14:09Z) - Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output [1.4298334143083322]
Likelihood-free inference for simulator-based statistical models has attracted a surge of interest, both in the machine learning and statistics communities.
Here we derive a set of theoretical results to enable estimation, hypothesis testing and construction of confidence intervals for model parameters using computation properties of the Jensen-Shannon- divergence.
Such approximation offers a rapid alternative to more-intensive approaches and can be attractive for diverse applications of simulator-based models.
arXiv Detail & Related papers (2022-05-22T18:00:13Z) - PSD Representations for Effective Probability Models [117.35298398434628]
We show that a recently proposed class of positive semi-definite (PSD) models for non-negative functions is particularly suited to this end.
We characterize both approximation and generalization capabilities of PSD models, showing that they enjoy strong theoretical guarantees.
Our results open the way to applications of PSD models to density estimation, decision theory and inference.
arXiv Detail & Related papers (2021-06-30T15:13:39Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - A General Pairwise Comparison Model for Extremely Sparse Networks [5.298287413134346]
We show that the maximum likelihood estimator for the latent score vector of the subjects is uniformly consistent under a near-minimal condition on network sparsity.
Our results guarantee that the maximum likelihood estimator is justified for estimation in large-scale pairwise comparison networks.
arXiv Detail & Related papers (2020-02-20T16:39:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.