Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output
- URL: http://arxiv.org/abs/2205.10890v2
- Date: Thu, 26 May 2022 15:35:53 GMT
- Title: Nonparametric likelihood-free inference with Jensen-Shannon divergence
for simulator-based models with categorical output
- Authors: Jukka Corander and Ulpu Remes and Ida Holopainen and Timo Koski
- Abstract summary: Likelihood-free inference for simulator-based statistical models has attracted a surge of interest, both in the machine learning and statistics communities.
Here we derive a set of theoretical results to enable estimation, hypothesis testing and construction of confidence intervals for model parameters using computation properties of the Jensen-Shannon- divergence.
Such approximation offers a rapid alternative to more-intensive approaches and can be attractive for diverse applications of simulator-based models.
- Score: 1.4298334143083322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Likelihood-free inference for simulator-based statistical models has recently
attracted a surge of interest, both in the machine learning and statistics
communities. The primary focus of these research fields has been to approximate
the posterior distribution of model parameters, either by various types of
Monte Carlo sampling algorithms or deep neural network -based surrogate models.
Frequentist inference for simulator-based models has been given much less
attention to date, despite that it would be particularly amenable to
applications with big data where implicit asymptotic approximation of the
likelihood is expected to be accurate and can leverage computationally
efficient strategies. Here we derive a set of theoretical results to enable
estimation, hypothesis testing and construction of confidence intervals for
model parameters using asymptotic properties of the Jensen--Shannon divergence.
Such asymptotic approximation offers a rapid alternative to more
computation-intensive approaches and can be attractive for diverse applications
of simulator-based models. 61
Related papers
- All-in-one simulation-based inference [19.41881319338419]
We present a new amortized inference method -- the Simformer -- which overcomes current limitations.
The Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks.
It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data.
arXiv Detail & Related papers (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Black-box Bayesian inference for economic agent-based models [0.0]
We investigate the efficacy of two classes of black-box approximate Bayesian inference methods.
We demonstrate that neural network based black-box methods provide state of the art parameter inference for economic simulation models.
arXiv Detail & Related papers (2022-02-01T18:16:12Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Latent Gaussian Model Boosting [0.0]
Tree-boosting shows excellent predictive accuracy on many data sets.
We obtain increased predictive accuracy compared to existing approaches in both simulated and real-world data experiments.
arXiv Detail & Related papers (2021-05-19T07:36:30Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.