EG-Gaussian: Epipolar Geometry and Graph Network Enhanced 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2504.13540v1
- Date: Fri, 18 Apr 2025 08:10:39 GMT
- Title: EG-Gaussian: Epipolar Geometry and Graph Network Enhanced 3D Gaussian Splatting
- Authors: Beizhen Zhao, Yifan Zhou, Zijian Wang, Hao Wang,
- Abstract summary: EG-Gaussian utilizes epipolar geometry and graph networks for 3D scene reconstruction.<n>Our approach significantly improves reconstruction accuracy compared to 3DGS-based methods.
- Score: 9.94641948288285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore an open research problem concerning the reconstruction of 3D scenes from images. Recent methods have adopt 3D Gaussian Splatting (3DGS) to produce 3D scenes due to its efficient training process. However, these methodologies may generate incomplete 3D scenes or blurred multiviews. This is because of (1) inaccurate 3DGS point initialization and (2) the tendency of 3DGS to flatten 3D Gaussians with the sparse-view input. To address these issues, we propose a novel framework EG-Gaussian, which utilizes epipolar geometry and graph networks for 3D scene reconstruction. Initially, we integrate epipolar geometry into the 3DGS initialization phase to enhance initial 3DGS point construction. Then, we specifically design a graph learning module to refine 3DGS spatial features, in which we incorporate both spatial coordinates and angular relationships among neighboring points. Experiments on indoor and outdoor benchmark datasets demonstrate that our approach significantly improves reconstruction accuracy compared to 3DGS-based methods.
Related papers
- DirectTriGS: Triplane-based Gaussian Splatting Field Representation for 3D Generation [37.09199962653554]
We present DirectTriGS, a novel framework designed for 3D object generation with Gaussian Splatting (GS)
The proposed generation framework can produce high-quality 3D object geometry and rendering results in the text-to-3D task.
arXiv Detail & Related papers (2025-03-10T04:05:38Z) - GeomGS: LiDAR-Guided Geometry-Aware Gaussian Splatting for Robot Localization [20.26969580492428]
We propose a novel 3DGS method called Geometry-Aware Gaussian Splatting (GeomGS)<n>Our GeomGS demonstrates state-of-the-art geometric and localization performance across several benchmarks, while also improving photometric performance.
arXiv Detail & Related papers (2025-01-23T06:43:38Z) - LineGS : 3D Line Segment Representation on 3D Gaussian Splatting [0.0]
LineGS is a novel method that combines geometry-guided 3D line reconstruction with a 3D Gaussian splatting model.<n>The results show significant improvements in both geometric accuracy and model compactness compared to baseline methods.
arXiv Detail & Related papers (2024-11-30T13:29:36Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.<n>We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - Trim 3D Gaussian Splatting for Accurate Geometry Representation [72.00970038074493]
We introduce Trim 3D Gaussian Splatting (TrimGS) to reconstruct accurate 3D geometry from images.
Our experimental and theoretical analyses reveal that a relatively small Gaussian scale is a non-negligible factor in representing and optimizing the intricate details.
When combined with the original 3DGS and the state-of-the-art 2DGS, TrimGS consistently yields more accurate geometry and higher perceptual quality.
arXiv Detail & Related papers (2024-06-11T17:34:46Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - 3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis [49.352765055181436]
We propose a 3D geometry-aware deformable Gaussian Splatting method for dynamic view synthesis.
Our solution achieves 3D geometry-aware deformation modeling, which enables improved dynamic view synthesis and 3D dynamic reconstruction.
arXiv Detail & Related papers (2024-04-09T12:47:30Z) - GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
We introduce GeoGS3D, a framework for reconstructing detailed 3D objects from single-view images.
We propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization.
Experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects.
arXiv Detail & Related papers (2024-03-15T12:24:36Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.56357905500512]
3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis.<n>We propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS.<n>Our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
arXiv Detail & Related papers (2024-01-31T14:19:03Z) - Text-to-3D using Gaussian Splatting [18.163413810199234]
This paper proposes GSGEN, a novel method that adopts Gaussian Splatting, a recent state-of-the-art representation, to text-to-3D generation.
GSGEN aims at generating high-quality 3D objects and addressing existing shortcomings by exploiting the explicit nature of Gaussian Splatting.
Our approach can generate 3D assets with delicate details and accurate geometry.
arXiv Detail & Related papers (2023-09-28T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.