Improving DeFi Accessibility through Efficient Liquidity Provisioning with Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2501.07508v1
- Date: Mon, 13 Jan 2025 17:27:11 GMT
- Title: Improving DeFi Accessibility through Efficient Liquidity Provisioning with Deep Reinforcement Learning
- Authors: Haonan Xu, Alessio Brini,
- Abstract summary: This paper applies deep reinforcement learning (DRL) to optimize liquidity provision in a DeFi protocol.
By promoting more efficient liquidity management, this work aims to make DeFi markets more accessible and inclusive for a broader range of participants.
- Score: 0.3376269351435395
- License:
- Abstract: This paper applies deep reinforcement learning (DRL) to optimize liquidity provisioning in Uniswap v3, a decentralized finance (DeFi) protocol implementing an automated market maker (AMM) model with concentrated liquidity. We model the liquidity provision task as a Markov Decision Process (MDP) and train an active liquidity provider (LP) agent using the Proximal Policy Optimization (PPO) algorithm. The agent dynamically adjusts liquidity positions by using information about price dynamics to balance fee maximization and impermanent loss mitigation. We use a rolling window approach for training and testing, reflecting realistic market conditions and regime shifts. This study compares the data-driven performance of the DRL-based strategy against common heuristics adopted by small retail LP actors that do not systematically modify their liquidity positions. By promoting more efficient liquidity management, this work aims to make DeFi markets more accessible and inclusive for a broader range of participants. Through a data-driven approach to liquidity management, this work seeks to contribute to the ongoing development of more efficient and user-friendly DeFi markets.
Related papers
- Flow: A Modular Approach to Automated Agentic Workflow Generation [53.073598156915615]
Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution.
However, the effective adjustment of Agentic during execution has not been well-studied.
arXiv Detail & Related papers (2025-01-14T04:35:37Z) - InvAgent: A Large Language Model based Multi-Agent System for Inventory Management in Supply Chains [0.0]
This study introduces a novel approach using large language models (LLMs) to manage multi-agent inventory systems.
Our model, InvAgent, enhances resilience and improves efficiency across the supply chain network.
arXiv Detail & Related papers (2024-07-16T04:55:17Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.
We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)
Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.
We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - Adaptive Liquidity Provision in Uniswap V3 with Deep Reinforcement
Learning [19.916721360624997]
Decentralized exchanges (DEXs) are a cornerstone of decentralized finance (DeFi)
This paper introduces a deep reinforcement learning (DRL) solution designed to adaptively adjust price ranges.
Our approach also neutralizes price-change risks by hedging the liquidity position through a rebalancing portfolio.
arXiv Detail & Related papers (2023-09-18T20:10:28Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
Decentralized Exchanges (DEXs) are new types of marketplaces leveraging technology.
One such DEX, Uniswap v3, allows liquidity providers to allocate funds more efficiently by specifying an active price interval for their funds.
This introduces the problem of finding an optimal strategy for choosing price intervals.
We formalize this problem as an online learning problem with non-stochastic rewards.
arXiv Detail & Related papers (2023-02-01T17:21:40Z) - Predictive Crypto-Asset Automated Market Making Architecture for
Decentralized Finance using Deep Reinforcement Learning [0.0]
The study proposes a quote-driven predictive automated market maker (AMM) platform with on-chain custody and settlement functions.
The proposed architecture is an augmentation to the Uniswap V3, a cryptocurrency AMM protocol, by utilizing a novel market equilibrium pricing for reduced divergence and slippage loss.
arXiv Detail & Related papers (2022-09-28T01:13:22Z) - Deep Reinforcement Learning Approach for Trading Automation in The Stock
Market [0.0]
This paper presents a model to generate profitable trades in the stock market using Deep Reinforcement Learning (DRL) algorithms.
We formulate the trading problem as a Partially Observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market.
We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm reporting a 2.68 Sharpe Ratio on unseen data set.
arXiv Detail & Related papers (2022-07-05T11:34:29Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.