InvAgent: A Large Language Model based Multi-Agent System for Inventory Management in Supply Chains
- URL: http://arxiv.org/abs/2407.11384v1
- Date: Tue, 16 Jul 2024 04:55:17 GMT
- Title: InvAgent: A Large Language Model based Multi-Agent System for Inventory Management in Supply Chains
- Authors: Yinzhu Quan, Zefang Liu,
- Abstract summary: This study introduces a novel approach using large language models (LLMs) to manage multi-agent inventory systems.
Our model, InvAgent, enhances resilience and improves efficiency across the supply chain network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supply chain management (SCM) involves coordinating the flow of goods, information, and finances across various entities to deliver products efficiently. Effective inventory management is crucial in today's volatile, uncertain, complex, and ambiguous (VUCA) world. Previous research has demonstrated the superiority of heuristic methods and reinforcement learning applications in inventory management. However, the application of large language models (LLMs) as autonomous agents in multi-agent systems for inventory management remains underexplored. This study introduces a novel approach using LLMs to manage multi-agent inventory systems. Leveraging their zero-shot learning capabilities, our model, InvAgent, enhances resilience and improves efficiency across the supply chain network. Our contributions include utilizing LLMs for zero-shot learning to enable adaptive and informed decision-making without prior training, providing significant explainability and clarity through Chain-of-Thought (CoT), and demonstrating dynamic adaptability to varying demand scenarios while minimizing costs and avoiding stockouts. Extensive evaluations across different scenarios highlight the efficiency of our model in SCM.
Related papers
- Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more.
Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks.
We present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of MLLMs.
arXiv Detail & Related papers (2024-11-21T18:59:55Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Large Language Models for Knowledge-Free Network Management: Feasibility Study and Opportunities [36.70339455624253]
This article presents a novel knowledge-free network management paradigm with the power of foundation models called large language models (LLMs)
LLMs can understand important contexts from input prompts containing minimal system information, thereby offering remarkable inference performance even for entirely new tasks.
Numerical results validate that knowledge-free LLMs are able to achieve comparable performance to existing knowledge-based optimization algorithms.
arXiv Detail & Related papers (2024-10-06T07:42:23Z) - Enhancing Supply Chain Visibility with Knowledge Graphs and Large Language Models [49.898152180805454]
This paper presents a novel framework leveraging Knowledge Graphs (KGs) and Large Language Models (LLMs) to enhance supply chain visibility.
Our zero-shot, LLM-driven approach automates the extraction of supply chain information from diverse public sources.
With high accuracy in NER and RE tasks, it provides an effective tool for understanding complex, multi-tiered supply networks.
arXiv Detail & Related papers (2024-08-05T17:11:29Z) - Controlling Large Language Model-based Agents for Large-Scale
Decision-Making: An Actor-Critic Approach [28.477463632107558]
We develop a modular framework called LLaMAC to address hallucination in Large Language Models and coordination in Multi-Agent Systems.
LLaMAC implements a value distribution encoding similar to that found in the human brain, utilizing internal and external feedback mechanisms to facilitate collaboration and iterative reasoning among its modules.
arXiv Detail & Related papers (2023-11-23T10:14:58Z) - MARLIM: Multi-Agent Reinforcement Learning for Inventory Management [1.1470070927586016]
This paper presents a novel reinforcement learning framework called MARLIM to address the inventory management problem.
Within this context, controllers are developed through single or multiple agents in a cooperative setting.
Numerical experiments on real data demonstrate the benefits of reinforcement learning methods over traditional baselines.
arXiv Detail & Related papers (2023-08-03T09:31:45Z) - A Versatile Multi-Agent Reinforcement Learning Benchmark for Inventory
Management [16.808873433821464]
Multi-agent reinforcement learning (MARL) models multiple agents that interact and learn within a shared environment.
Applying MARL to real-world scenarios is impeded by many challenges such as scaling up, complex agent interactions, and non-stationary dynamics.
arXiv Detail & Related papers (2023-06-13T05:22:30Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Control of Dual-Sourcing Inventory Systems using Recurrent Neural
Networks [0.0]
We show that proposed neural network controllers (NNCs) are able to learn near-optimal policies of commonly used instances within a few minutes of CPU time.
Our research opens up new ways of efficiently managing complex, high-dimensional inventory dynamics.
arXiv Detail & Related papers (2022-01-16T19:44:06Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.