論文の概要: GPT as a Monte Carlo Language Tree: A Probabilistic Perspective
- arxiv url: http://arxiv.org/abs/2501.07641v1
- Date: Mon, 13 Jan 2025 19:04:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:25:41.617506
- Title: GPT as a Monte Carlo Language Tree: A Probabilistic Perspective
- Title(参考訳): モンテカルロ言語木としてのGPT:確率論的視点
- Authors: Kun-Peng Ning, Jia-Yu Yao, Yu-Yang Liu, Mu-Nan Ning, Li Yuan,
- Abstract要約: 大規模言語モデル(LLM)は、大規模ウェブクローリングデータセット内の潜伏分布を学習すると考えられている。
本稿では,モンテカルロ言語木を用いて任意の言語データセットを表現できる,という新しい視点を提案する。
実験の結果、同じデータセット上でトレーニングされた異なるGPTモデルが、GPT-Tree可視化において大きな構造的類似性を示すことがわかった。
- 参考スコア(独自算出の注目度): 18.026350259669126
- License:
- Abstract: Large Language Models (LLMs), such as GPT, are considered to learn the latent distributions within large-scale web-crawl datasets and accomplish natural language processing (NLP) tasks by predicting the next token. However, this mechanism of latent distribution modeling lacks quantitative understanding and analysis. In this paper, we propose a novel perspective that any language dataset can be represented by a Monte Carlo Language Tree (abbreviated as ``Data-Tree''), where each node denotes a token, each edge denotes a token transition probability, and each sequence has a unique path. Any GPT-like language model can also be flattened into another Monte Carlo Language Tree (abbreviated as ``GPT-Tree''). Our experiments show that different GPT models trained on the same dataset exhibit significant structural similarity in GPT-Tree visualization, and larger models converge more closely to the Data-Tree. More than 87\% GPT output tokens can be recalled by Data-Tree. These findings may confirm that the reasoning process of LLMs is more likely to be probabilistic pattern-matching rather than formal reasoning, as each model inference seems to find a context pattern with maximum probability from the Data-Tree. Furthermore, we provide deeper insights into issues such as hallucination, Chain-of-Thought (CoT) reasoning, and token bias in LLMs.
- Abstract(参考訳): GPTのような大規模言語モデル(LLM)は、大規模Webクローリングデータセット内の潜伏分布を学習し、次のトークンを予測して自然言語処理(NLP)タスクを達成すると考えられている。
しかし、この潜在分布モデリングのメカニズムは定量的な理解と分析を欠いている。
本稿では,各ノードがトークンを示し,各エッジがトークン遷移確率を示し,各シーケンスがユニークな経路を持つような,任意の言語データセットをモンテカルロ言語ツリー( ``Data-Tree''' と略す)で表現できる,という新しい視点を提案する。
GPTに似た言語モデルは、別のモンテカルロ語木(略して ``GPT-Tree'')にフラット化することもできる。
実験の結果、同じデータセット上でトレーニングされた異なるGPTモデルは、GPT-Treeビジュアライゼーションにおいて大きな構造的類似性を示し、より大きなモデルはデータ-Treeにより深く収束していることがわかった。
87 %以上の GPT 出力トークンを Data-Tree でリコールすることができる。
これらの結果から,LLMの推論過程が形式的推論よりも確率的パターンマッチングである可能性が示唆された。
さらに,LLMにおける幻覚,CoT推論,トークンバイアスといった問題に対する深い洞察を提供する。
関連論文リスト
- Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs [72.89652710634051]
知識グラフ(KG)は、信頼性があり、構造化され、ドメイン固有であり、最新の外部知識を提供することで、Large Language Models(LLM)を補完する。
そこで本研究では,ゼロショット推論アルゴリズムであるTree-of-Traversalsを導入する。
論文 参考訳(メタデータ) (2024-07-31T06:01:24Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
我々は,木組モデルの解釈可能な表現を開発し,その振る舞いに関する貴重な洞察を提供する。
提案モデルは,木組決定関数を近似した浅い解釈可能な木を得るのに有効である。
論文 参考訳(メタデータ) (2023-02-15T10:43:31Z) - Machine Learning Approach and Extreme Value Theory to Correlated
Stochastic Time Series with Application to Tree Ring Data [0.0]
木輪の成長は, 建築や環境史の研究など, 様々な面で実装された。
本研究の目的は,ノッティンガムシャーで栽培されている9本の樹木の樹輪幅データを解析するために,MLアルゴリズムとエクストリーム値理論を用いることである。
論文 参考訳(メタデータ) (2023-01-27T01:44:43Z) - SETAR-Tree: A Novel and Accurate Tree Algorithm for Global Time Series
Forecasting [7.206754802573034]
本稿では,TARモデルと回帰木との密接な関係について検討する。
本研究では,葉のグローバルプール回帰(PR)モデルをトレーニングする,予測固有木アルゴリズムを提案する。
本評価では, 提案した樹木モデルと森林モデルを用いて, 最先端の樹木モデルよりも精度の高い木モデルを提案する。
論文 参考訳(メタデータ) (2022-11-16T04:30:42Z) - Structure-Unified M-Tree Coding Solver for MathWord Problem [57.825176412485504]
従来,数式表現の2次木構造を考慮に入れたモデルでは,性能が向上した。
本稿では、出力構造を統一するために、任意のM枝(M-tree)を持つ木を適用した構造統一M-Tree符号化(S-UMCr)を提案する。
広く使われているMAWPSとMath23Kデータセットの実験結果は、SUMC-rが複数の最先端モデルを上回るだけでなく、低リソース条件下でもはるかに優れた性能を発揮することを示した。
論文 参考訳(メタデータ) (2022-10-22T12:20:36Z) - TREE-G: Decision Trees Contesting Graph Neural Networks [33.364191419692105]
TREE-Gは、グラフデータに特化した新しい分割関数を導入することで、標準的な決定木を変更する。
グラフニューラルネットワーク(GNN)やグラフカーネル(Graph Kernels)などのグラフ学習アルゴリズムでは,TREE-Gが他のツリーベースモデルより一貫して優れていることが示されています。
論文 参考訳(メタデータ) (2022-07-06T15:53:17Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
複合イベント認識(CER)システムは、イベントのリアルタイムストリーム上のパターンを"即時"検出する能力によって、過去20年間に人気が高まっている。
このような現象が実際にCERエンジンによって検出される前に、パターンがいつ発生するかを予測する方法が不足している。
複雑なイベント予測の問題に対処しようとする形式的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-01T09:52:31Z) - Spectral Top-Down Recovery of Latent Tree Models [13.681975313065477]
スペクトルトップダウン・リカバリ (STDR) は、大きな潜在木モデルを推定するための分割・コンカレントアプローチである。
STDRの分割ステップは非ランダムです。
代わりに、観測されたノードに関連する適切なラプラシア行列のFiedlerベクトルに基づいている。
私達はSTDRが統計的に一貫性があることを証明し、高い確率で木を正確に回復するために必要なサンプルの数を縛ります。
論文 参考訳(メタデータ) (2021-02-26T02:47:42Z) - Constructing Taxonomies from Pretrained Language Models [52.53846972667636]
本稿では,事前学習した言語モデルを用いて分類木(WordNetなど)を構築する手法を提案する。
我々のアプローチは2つのモジュールから構成されており、1つは親関係を予測し、もう1つはそれらの予測を木に調整する。
我々は、WordNetからサンプリングされたサブツリーでモデルをトレーニングし、重複しないWordNetサブツリーでテストする。
論文 参考訳(メタデータ) (2020-10-24T07:16:21Z) - Recursive Top-Down Production for Sentence Generation with Latent Trees [77.56794870399288]
自然および合成言語に対する文脈自由文法の生成特性をモデル化する。
潜伏二分木構造にN$の葉を持つ動的プログラミングアルゴリズムを提案する。
また,Multi30kデータセットを用いたドイツ語と英語の翻訳実験を行った。
論文 参考訳(メタデータ) (2020-10-09T17:47:16Z) - Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages [112.65994041398481]
本稿では,ニューラルパラメータの空間に対するベイズ生成モデルを提案する。
タスク言語の組み合わせから得られたデータに基づいて、そのような潜伏変数よりも後部を推測する。
我々のモデルは、最先端のゼロショットの言語間転送手法よりも、同等か良い結果が得られる。
論文 参考訳(メタデータ) (2020-01-30T16:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。