論文の概要: Large Language Models for Knowledge Graph Embedding Techniques, Methods, and Challenges: A Survey
- arxiv url: http://arxiv.org/abs/2501.07766v1
- Date: Tue, 14 Jan 2025 00:47:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:17.928051
- Title: Large Language Models for Knowledge Graph Embedding Techniques, Methods, and Challenges: A Survey
- Title(参考訳): 知識グラフ埋め込み技術,手法,課題のための大規模言語モデル:調査
- Authors: Bingchen Liu, Xin Li,
- Abstract要約: 大きな言語モデル(LLM)は、その優れたパフォーマンスのために、様々な分野で多くの注目を集めています。
彼らは、自然言語を理解して生成するために、大量のテキストデータに数億以上のパラメータを訓練することを目指している。
自然言語処理(NLP)の分野におけるディープラーニングモデルとして、大量のテキストデータを学習し、次の単語を予測したり、与えられたテキストに関連するコンテンツを生成する。
- 参考スコア(独自算出の注目度): 8.979843002425948
- License:
- Abstract: Large Language Models (LLMs) have attracted a lot of attention in various fields due to their superior performance, aiming to train hundreds of millions or more parameters on large amounts of text data to understand and generate natural language. As the superior performance of LLMs becomes apparent, they are increasingly being applied to knowledge graph embedding (KGE) related tasks to improve the processing results. As a deep learning model in the field of Natural Language Processing (NLP), it learns a large amount of textual data to predict the next word or generate content related to a given text. However, LLMs have recently been invoked to varying degrees in different types of KGE related scenarios such as multi-modal KGE and open KGE according to their task characteristics. In this paper, we investigate a wide range of approaches for performing LLMs-related tasks in different types of KGE scenarios. To better compare the various approaches, we summarize each KGE scenario in a classification. In addition to the categorization methods, we provide a tabular overview of the methods and their source code links for a more direct comparison. In the article we also discuss the applications in which the methods are mainly used and suggest several forward-looking directions for the development of this new research area.
- Abstract(参考訳): 大規模言語モデル(LLM)は、多量のテキストデータに対して数億以上のパラメータを訓練し、自然言語を理解し、生成することを目的として、優れたパフォーマンスのために様々な分野で注目を集めている。
LLMの性能が向上するにつれて、知識グラフ埋め込み(KGE)関連タスクにも適用され、処理結果の改善が進んでいる。
自然言語処理(NLP)の分野におけるディープラーニングモデルとして、大量のテキストデータを学習し、次の単語を予測したり、与えられたテキストに関連するコンテンツを生成する。
しかし、近年、マルチモーダルKGEやオープンKGEといったKGE関連シナリオのタスク特性に応じて、様々な種類にLCMが呼び出されている。
本稿では,異なるタイプのKGEシナリオにおいて,LLMに関連するタスクを実行するための幅広いアプローチについて検討する。
様々な手法をよく比較するため、各KGEシナリオを分類で要約する。
分類法に加えて,提案手法とそのソースコードリンクを表形式で概説し,より直接比較する。
また,本論文では,本手法を主に活用する応用について論じ,本研究分野の発展に向けた今後の展望について述べる。
関連論文リスト
- Evaluating LLM Prompts for Data Augmentation in Multi-label Classification of Ecological Texts [1.565361244756411]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて重要な役割を果たす。
本研究では,ロシアのソーシャルメディアにおけるグリーンプラクティスの言及を検出するために,プロンプトベースのデータ拡張を適用した。
論文 参考訳(メタデータ) (2024-11-22T12:37:41Z) - Layer by Layer: Uncovering Where Multi-Task Learning Happens in Instruction-Tuned Large Language Models [22.676688441884465]
タスクの多種多様な配列で訓練済みの大規模言語モデル(LLM)を微調整することが、モデル構築の一般的なアプローチとなっている。
本研究では,事前学習したLLMに符号化されたタスク固有情報と,その表現に対する指導指導の効果について検討する。
論文 参考訳(メタデータ) (2024-10-25T23:38:28Z) - All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
マルチモーダルな大言語モデル(MLLM)は、膨大な高品質の画像テキストデータセットをトレーニングすることで、大きな進歩を遂げている。
しかし、マスクのような細粒度や空間的に密集した情報をテキストで明示的に伝達することの難しさは、MLLMにとって困難である。
本稿では、特殊な視覚モデルから派生した細粒度の外部知識をMLLMに統合する新しい視覚的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-05T17:43:30Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
本稿では,新しい教師なしテキスト埋め込み手法であるMeta-Task Prompting with Explicit One-Word Limitationを紹介する。
モデル微調整を必要とせずに,大規模言語モデルから高品質な文埋め込みを生成する。
提案法は,多種多様なシナリオにまたがって生成を組み込む汎用的で資源効率のよい手法を提供する。
論文 参考訳(メタデータ) (2024-02-28T16:35:52Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
グラフ上の大規模言語モデルに関連するシナリオとテクニックを体系的にレビューする。
まず,LLMをグラフに適用する可能性シナリオを,純グラフ,テキスト分散グラフ,テキストペアグラフの3つのカテゴリにまとめる。
本稿では,そのような手法の現実的な応用について論じ,オープンソースコードとベンチマークデータセットを要約する。
論文 参考訳(メタデータ) (2023-12-05T14:14:27Z) - Leveraging Large Language Models for Node Generation in Few-Shot Learning on Text-Attributed Graphs [5.587264586806575]
本稿では,Large Language Models (LLMs) を用いたノード生成によるテキスト分散グラフの強化のためのプラグイン・アンド・プレイ手法を提案する。
LLMはラベルから意味情報を抽出し、模範としてカテゴリに属するサンプルを生成する。
エッジ予測器を用いて、生のデータセットに固有の構造情報をキャプチャし、新たに生成されたサンプルを元のグラフに統合する。
論文 参考訳(メタデータ) (2023-10-15T16:04:28Z) - Graph Neural Prompting with Large Language Models [32.97391910476073]
Graph Neural Prompting (GNP)は、知識グラフから有益な知識を学ぶために、事前訓練された言語モデルを支援するための新しいプラグアンドプレイ方式である。
複数のデータセットに対する大規模な実験は、常識的および生物医学的推論タスクにおいて、GNPの優位性を示す。
論文 参考訳(メタデータ) (2023-09-27T06:33:29Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。