論文の概要: Black-box Optimization with Simultaneous Statistical Inference for Optimal Performance
- arxiv url: http://arxiv.org/abs/2501.07795v1
- Date: Tue, 14 Jan 2025 02:37:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:28:51.261967
- Title: Black-box Optimization with Simultaneous Statistical Inference for Optimal Performance
- Title(参考訳): 最適性能のための同時統計的推論を用いたブラックボックス最適化
- Authors: Teng Lian, Jian-Qiang Hu, Yuhang Wu, Zeyu Zheng,
- Abstract要約: ブラックボックス最適化は複雑なシステム管理における意思決定においてしばしば発生する。
我々のゴールは、最適化と統計的推測の2つのタスクをオンライン方式で最適性能に対処することである。
- 参考スコア(独自算出の注目度): 18.13513199455587
- License:
- Abstract: Black-box optimization is often encountered for decision-making in complex systems management, where the knowledge of system is limited. Under these circumstances, it is essential to balance the utilization of new information with computational efficiency. In practice, decision-makers often face the dual tasks of optimization and statistical inference for the optimal performance, in order to achieve it with a high reliability. Our goal is to address the dual tasks in an online fashion. Wu et al (2022) [arXiv preprint: 2210.06737] point out that the sample average of performance estimates generated by the optimization algorithm needs not to admit a central limit theorem. We propose an algorithm that not only tackles this issue, but also provides an online consistent estimator for the variance of the performance. Furthermore, we characterize the convergence rate of the coverage probabilities of the asymptotic confidence intervals.
- Abstract(参考訳): ブラックボックス最適化は、システムの知識が限られている複雑なシステム管理において、意思決定においてしばしば発生する。
このような状況下では、新しい情報の利用と計算効率のバランスをとることが不可欠である。
実際には、意思決定者は、高い信頼性でそれを達成するために、最適化と最適性能の統計的推測という2つの課題に直面していることが多い。
私たちの目標は、両タスクをオンライン形式で解決することにあります。
Wu et al (2022) [arXiv preprint: 2210.06737] は、最適化アルゴリズムによって生成される性能推定値のサンプル平均が中心極限定理を受け入れる必要はないことを指摘している。
本稿では,この問題に対処するだけでなく,性能のばらつきを推定するオンライン一貫した推定器も提案する。
さらに、漸近的信頼区間のカバレッジ確率の収束率を特徴付ける。
関連論文リスト
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Principled Preferential Bayesian Optimization [22.269732173306192]
優先ベイズ最適化(BO)の問題について検討する。
一対の候補解よりも優先的なフィードバックしか持たないブラックボックス関数を最適化することを目指している。
この問題を解決するために,効率的な計算手法を用いた楽観的アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-08T02:57:47Z) - Stochastic Bayesian Optimization with Unknown Continuous Context
Distribution via Kernel Density Estimation [28.413085548038932]
本稿では,カーネル密度推定を用いて連続文脈変数の確率密度関数(PDF)をオンラインで学習する2つのアルゴリズムを提案する。
理論的結果は、両方のアルゴリズムが期待する目的に対して準線形ベイズ累積後悔を持つことを示している。
論文 参考訳(メタデータ) (2023-12-16T11:32:28Z) - Online Resource Allocation with Convex-set Machine-Learned Advice [27.662388663465006]
本稿では、一貫した比とロバストな比のバランスをとる最適オンラインリソース割り当てアルゴリズムのパラメータ化クラスを導入する。
具体的には、C-リート最適設定において、ロバスト比が少なくともCであることを保証するとともに、一貫した比を最大化する。
論文 参考訳(メタデータ) (2023-06-21T14:09:33Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
木アンサンブルはアルゴリズムチューニングやニューラルアーキテクチャ検索といったブラックボックス最適化タスクに適している。
ブラックボックス最適化にツリーアンサンブルを使うことの2つのよく知られた課題は、探索のためのモデル不確実性を効果的に定量化し、また、 (ii) ピースワイドな定値取得関数を最適化することである。
我々のフレームワークは、連続/離散的機能に対する非拘束ブラックボックス最適化のための最先端の手法と同様に、混合変数の特徴空間と既知の入力制約を組み合わせた問題の競合する手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-02T16:59:37Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Optimum-statistical Collaboration Towards General and Efficient
Black-box Optimization [23.359363844344408]
最適化過程において,最適化誤差フラックスと統計的誤差フラックスとの相互作用を管理するアルゴリズムフレームワークを導入する。
我々のフレームワークとその分析は、異なる局所的滑らかさの仮定を満たす関数と分割の大きなファミリーに適用できる。
理論的には、局所的滑らかさの仮定が異なる条件下で、アルゴリズムが速度-最適後悔境界を楽しむことを証明する。
論文 参考訳(メタデータ) (2021-06-17T02:37:39Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。