論文の概要: A Low-cost and Ultra-lightweight Binary Neural Network for Traffic Signal Recognition
- arxiv url: http://arxiv.org/abs/2501.07808v1
- Date: Tue, 14 Jan 2025 03:19:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:14.787738
- Title: A Low-cost and Ultra-lightweight Binary Neural Network for Traffic Signal Recognition
- Title(参考訳): 交通信号認識のための低コストで軽量なバイナリニューラルネットワーク
- Authors: Mingke Xiao, Yue Su, Liang Yu, Guanglong Qu, Yutong Jia, Yukuan Chang, Xu Zhang,
- Abstract要約: ハードウェア展開用に設計された超軽量バイナリニューラルネットワーク(BNN)モデルを提案する。
提案モデルでは、97.64%の精度で優れた認識性能を示す。
我々の研究は、コンピュータビジョンモデルのハードウェア展開におけるBNNの大きな可能性を示している。
- 参考スコア(独自算出の注目度): 5.296139403757585
- License:
- Abstract: The deployment of neural networks in vehicle platforms and wearable Artificial Intelligence-of-Things (AIOT) scenarios has become a research area that has attracted much attention. With the continuous evolution of deep learning technology, many image classification models are committed to improving recognition accuracy, but this is often accompanied by problems such as large model resource usage, complex structure, and high power consumption, which makes it challenging to deploy on resource-constrained platforms. Herein, we propose an ultra-lightweight binary neural network (BNN) model designed for hardware deployment, and conduct image classification research based on the German Traffic Sign Recognition Benchmark (GTSRB) dataset. In addition, we also verify it on the Chinese Traffic Sign (CTS) and Belgian Traffic Sign (BTS) datasets. The proposed model shows excellent recognition performance with an accuracy of up to 97.64%, making it one of the best performing BNN models in the GTSRB dataset. Compared with the full-precision model, the accuracy loss is controlled within 1%, and the parameter storage overhead of the model is only 10% of that of the full-precision model. More importantly, our network model only relies on logical operations and low-bit width fixed-point addition and subtraction operations during the inference phase, which greatly simplifies the design complexity of the processing element (PE). Our research shows the great potential of BNN in the hardware deployment of computer vision models, especially in the field of computer vision tasks related to autonomous driving.
- Abstract(参考訳): 車両プラットフォームへのニューラルネットワークの展開と、ウェアラブル人工知能(AIOT)シナリオは、多くの注目を集めている研究領域となっている。
ディープラーニング技術の継続的な進化に伴い、多くの画像分類モデルは認識精度の向上にコミットされているが、これは大きなモデルリソースの使用、複雑な構造、高消費電力といった問題を伴うことが多く、リソース制約のあるプラットフォームへのデプロイが困難である。
本稿では、ハードウェアデプロイメント用に設計された超軽量バイナリニューラルネットワーク(BNN)モデルを提案し、ドイツ交通信号認識ベンチマーク(GTSRB)データセットに基づく画像分類研究を行う。
また、中国交通信号(CTS)とベルギー交通信号(BTS)のデータセットで検証する。
提案モデルは、97.64%の精度で優れた認識性能を示し、GTSRBデータセットで最も優れたBNNモデルの一つとなっている。
完全精度モデルと比較すると,精度損失は1%以内で制御され,パラメータの保存オーバーヘッドは完全精度モデルの10%に過ぎなかった。
さらに重要なことは、我々のネットワークモデルは、推論フェーズにおける論理演算と低ビット幅の固定点加算と減算演算のみに依存しており、処理要素(PE)の設計複雑さを大幅に単純化する。
我々の研究は、特に自律運転に関連するコンピュータビジョンタスクの分野において、コンピュータビジョンモデルのハードウェア展開におけるBNNの大きな可能性を示している。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset [2.239394800147746]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSをデプロイする上での課題である。
本稿では、軽量畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BiLSTM)を組み合わせた効果的なIDSモデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T17:41:16Z) - Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks [0.2499907423888049]
デジタルツインネットワーク(DTN)技術は,自律型ネットワークの基礎技術として期待されている。
DTNは、クローズドループシステムにおいて、リアルタイムに収集されたデータに基づいてネットワークを運用およびシステム化できるという利点がある。
DTNの使用を最適化するために、さまざまなAI研究と標準化作業が進行中である。
論文 参考訳(メタデータ) (2024-05-14T09:55:03Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
本稿では,ニューラルネットワークアーキテクチャを利用したポーズ推定ソフトウェアを提案する。
我々は、低消費電力の機械学習アクセラレーターが宇宙での人工知能の活用を可能にしていることを示す。
論文 参考訳(メタデータ) (2022-04-07T08:53:18Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
本論文では,記憶神経ネットワークと呼ばれる新しい繰り返しニューラルネットワークを用いて,時空間的視線軌道予測の問題を解くことを試みる。
提案手法は計算量が少なく,LSTMやGRUを用いた他のディープラーニングモデルと比較すると,単純なアーキテクチャである。
論文 参考訳(メタデータ) (2021-02-24T05:02:19Z) - A Survey on Impact of Transient Faults on BNN Inference Accelerators [0.9667631210393929]
ビッグデータブームにより、非常に大きなデータセットへのアクセスと分析が容易になります。
ディープラーニングモデルは、計算能力と極めて高いメモリアクセスを必要とする。
本研究では,ソフトエラーが独自の深層学習アルゴリズムに与える影響が画像の劇的な誤分類を引き起こす可能性を実証した。
論文 参考訳(メタデータ) (2020-04-10T16:15:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。