論文の概要: Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset
- arxiv url: http://arxiv.org/abs/2407.14945v1
- Date: Sat, 20 Jul 2024 17:41:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:58:07.194798
- Title: Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset
- Title(参考訳): 効率的な侵入検出:UNSW-NB15データセット上の$ ^2$特徴選択とCNN-BiLSTMを組み合わせる
- Authors: Mohammed Jouhari, Hafsa Benaddi, Khalil Ibrahimi,
- Abstract要約: 侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSをデプロイする上での課題である。
本稿では、軽量畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BiLSTM)を組み合わせた効果的なIDSモデルを提案する。
- 参考スコア(独自算出の注目度): 2.239394800147746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intrusion Detection Systems (IDSs) have played a significant role in the detection and prevention of cyber-attacks in traditional computing systems. It is not surprising that this technology is now being applied to secure Internet of Things (IoT) networks against cyber threats. However, the limited computational resources available on IoT devices pose a challenge for deploying conventional computing-based IDSs. IDSs designed for IoT environments must demonstrate high classification performance, and utilize low-complexity models. Developing intrusion detection models in the field of IoT has seen significant advancements. However, achieving a balance between high classification performance and reduced complexity remains a challenging endeavor. In this research, we present an effective IDS model that addresses this issue by combining a lightweight Convolutional Neural Network (CNN) with bidirectional Long Short-Term Memory (BiLSTM). Additionally, we employ feature selection techniques to minimize the number of features inputted into the model, thereby reducing its complexity. This approach renders the proposed model highly suitable for resource-constrained IoT devices, ensuring it meets their computation capability requirements. Creating a model that meets the demands of IoT devices and attains enhanced precision is a challenging task. However, our suggested model outperforms previous works in the literature by attaining a remarkable accuracy rate of 97.90% within a prediction time of 1.1 seconds for binary classification. Furthermore, it achieves an accuracy rate of 97.09% within a prediction time of 2.10 seconds for multiclassification.
- Abstract(参考訳): 侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
この技術が、サイバー脅威に対するセキュアなモノのインターネット(IoT)ネットワークに適用されていることは、驚くにあたらない。
しかし、IoTデバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSをデプロイする上での課題である。
IoT環境用に設計されたIDSは、高い分類性能を示し、低複雑さモデルを使用する必要がある。
IoT分野における侵入検出モデルの開発は、大きな進歩を遂げている。
しかし、高い分類性能と複雑さの低減のバランスを取ることは、依然として困難な試みである。
本研究では,軽量畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BiLSTM)を組み合わせた効果的なIDSモデルを提案する。
さらに,モデルに入力される特徴の数を最小限に抑えるために,特徴選択手法を採用し,その複雑さを低減する。
このアプローチにより、提案されたモデルはリソース制約のあるIoTデバイスに非常に適しており、計算能力要件を満たすことが保証される。
IoTデバイスの要求を満たし、精度を向上するモデルを作成することは、難しい課題です。
しかし,本提案モデルは,2進分類で1.1秒の予測時間内で,顕著な精度97.90%を達成することにより,従来の文献よりも優れていた。
さらに、マルチクラス化の予測時間2.10秒で97.09%の精度を達成する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSのデプロイを困難にしている。
軽量CNNと双方向LSTM(BiLSTM)を組み合わせたハイブリッドCNNアーキテクチャを提案し,UNSW-NB15データセット上でのIDSの性能向上を図る。
論文 参考訳(メタデータ) (2024-06-04T20:36:21Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
本稿では,Deep Q-Networks (DQN) を用いた強化学習を分類タスクに活用するフレームワークを提案する。
本稿では,OVR(One-Versus-The-Rest)方式で,マルチクラス運動画像(MI)分類のための前処理手法を提案する。
DQNと1D-CNN-LSTMアーキテクチャの統合は意思決定プロセスをリアルタイムで最適化する。
論文 参考訳(メタデータ) (2024-02-09T02:03:13Z) - Quantization-aware Neural Architectural Search for Intrusion Detection [5.010685611319813]
本稿では、最先端NNの1000倍の規模を持つ量子化ニューラルネットワーク(NN)モデルを自動的に訓練し、進化させる設計手法を提案する。
FPGAにデプロイする際にこのネットワークが利用するLUTの数は2.3倍から8.5倍と小さく、性能は以前の作業に匹敵する。
論文 参考訳(メタデータ) (2023-11-07T18:35:29Z) - Revolutionizing Cyber Threat Detection with Large Language Models: A
privacy-preserving BERT-based Lightweight Model for IoT/IIoT Devices [3.340416780217405]
本稿では,インターネットネットワークにおけるサイバー脅威検出にBERT(Bidirectional Representations from Transformers)モデルを活用する,新たなアーキテクチャであるSecurityBERTを提案する。
我々の研究は、SecurityBERTがサイバー脅威検出において、畳み込みニューラルネットワーク(CNNIoT)やリカレントニューラルネットワーク(IoTRNN)など、従来の機械学習(ML)とディープラーニング(DL)の手法より優れていることを示した。
SecurityBERTは、14の異なる攻撃タイプを特定することで、98.2%の全体的な精度を達成し、ハイブリッドソリューションによって設定された過去の記録を上回った。
論文 参考訳(メタデータ) (2023-06-25T15:04:21Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - MS-RANAS: Multi-Scale Resource-Aware Neural Architecture Search [94.80212602202518]
我々は,MS-RANAS(Multi-Scale Resource-Aware Neural Architecture Search)を提案する。
我々は,検索コストの削減を図るために,ワンショットのアーキテクチャ探索手法を採用した。
我々は精度-速度トレードオフの観点から最先端の結果を得る。
論文 参考訳(メタデータ) (2020-09-29T11:56:01Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。